scholarly journals Abstractive Text Summary of COVID-19 Documents based on LSTM Method and Word Embedding

Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 1011-1022
Author(s):  
Saja Naeem Turky ◽  
Ahmed Sabah Ahmed AL-Jumaili ◽  
Rajaa K. Hasoun

An abstractive summary is a process of producing a brief and coherent summary that contains the original text's main concepts. In scientific texts, summarization has generally been restricted to extractive techniques. Abstractive methods that use deep learning have proven very effective in summarizing articles in public fields, like news documents. Because of the difficulty of the neural frameworks for learning specific domain- knowledge especially in NLP task, they haven't been more applied to documents that are related to a particular domain such as the medical domain. In this study, an abstractive summary is proposed. The proposed system is applied to the COVID-19 dataset which a collection of science documents linked to the coronavirus and associated illnesses, in this work 12000 samples from this dataset have been used. The suggested model is an abstractive summary model that can read abstracts of Covid-19 papers then create summaries in the style of a single-statement headline. A text summary model has been designed based on the LSTM method architecture. The proposed model includes using a glove model for word embedding which is converts input sequence to vector forms, then these vectors pass through LSTM layers to produce the summary. The results indicate that using an LSTM and glove model for word embedding together improves the summarization system's performance. This system was evaluated by rouge metrics and it achieved (43.6, 36.7, 43.6) for Rouge-1, Rouge-2, and Rouge-L respectively.

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Pablo Zinemanas ◽  
Martín Rocamora ◽  
Marius Miron ◽  
Frederic Font ◽  
Xavier Serra

Deep learning models have improved cutting-edge technologies in many research areas, but their black-box structure makes it difficult to understand their inner workings and the rationale behind their predictions. This may lead to unintended effects, such as being susceptible to adversarial attacks or the reinforcement of biases. There is still a lack of research in the audio domain, despite the increasing interest in developing deep learning models that provide explanations of their decisions. To reduce this gap, we propose a novel interpretable deep learning model for automatic sound classification, which explains its predictions based on the similarity of the input to a set of learned prototypes in a latent space. We leverage domain knowledge by designing a frequency-dependent similarity measure and by considering different time-frequency resolutions in the feature space. The proposed model achieves results that are comparable to that of the state-of-the-art methods in three different sound classification tasks involving speech, music, and environmental audio. In addition, we present two automatic methods to prune the proposed model that exploit its interpretability. Our system is open source and it is accompanied by a web application for the manual editing of the model, which allows for a human-in-the-loop debugging approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Saleh Nagi Alsubari ◽  
Sachin N. Deshmukh ◽  
Mosleh Hmoud Al-Adhaileh ◽  
Fawaz Waselalla Alsaade ◽  
Theyazn H. H. Aldhyani

Online product reviews play a major role in the success or failure of an E-commerce business. Before procuring products or services, the shoppers usually go through the online reviews posted by previous customers to get recommendations of the details of products and make purchasing decisions. Nevertheless, it is possible to enhance or hamper specific E-business products by posting fake reviews, which can be written by persons called fraudsters. These reviews can cause financial loss to E-commerce businesses and misguide consumers to take the wrong decision to search for alternative products. Thus, developing a fake review detection system is ultimately required for E-commerce business. The proposed methodology has used four standard fake review datasets of multidomains include hotels, restaurants, Yelp, and Amazon. Further, preprocessing methods such as stopword removal, punctuation removal, and tokenization have performed as well as padding sequence method for making the input sequence has fixed length during training, validation, and testing the model. As this methodology uses different sizes of datasets, various input word-embedding matrices of n-gram features of the review’s text are developed and created with help of word-embedding layer that is one component of the proposed model. Convolutional and max-pooling layers of the CNN technique are implemented for dimensionality reduction and feature extraction, respectively. Based on gate mechanisms, the LSTM layer is combined with the CNN technique for learning and handling the contextual information of n-gram features of the review’s text. Finally, a sigmoid activation function as the last layer of the proposed model receives the input sequences from the previous layer and performs binary classification task of review text into fake or truthful. In this paper, the proposed CNN-LSTM model was evaluated in two types of experiments, in-domain and cross-domain experiments. For an in-domain experiment, the model is applied on each dataset individually, while in the case of a cross-domain experiment, all datasets are gathered and put into a single data frame and evaluated entirely. The testing results of the model in-domain experiment datasets were 77%, 85%, 86%, and 87% in the terms of accuracy for restaurant, hotel, Yelp, and Amazon datasets, respectively. Concerning the cross-domain experiment, the proposed model has attained 89% accuracy. Furthermore, comparative analysis of the results of in-domain experiments with existing approaches has been done based on accuracy metric and, it is observed that the proposed model outperformed the compared methods.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1527 ◽  
Author(s):  
Han-Sub Shin ◽  
Hyuk-Yoon Kwon ◽  
Seung-Jin Ryu

Detecting cybersecurity intelligence (CSI) on social media such as Twitter is crucial because it allows security experts to respond cyber threats in advance. In this paper, we devise a new text classification model based on deep learning to classify CSI-positive and -negative tweets from a collection of tweets. For this, we propose a novel word embedding model, called contrastive word embedding, that enables to maximize the difference between base embedding models. First, we define CSI-positive and -negative corpora, which are used for constructing embedding models. Here, to supplement the imbalance of tweet data sets, we additionally employ the background knowledge for each tweet corpus: (1) CVE data set for CSI-positive corpus and (2) Wikitext data set for CSI-negative corpus. Second, we adopt the deep learning models such as CNN or LSTM to extract adequate feature vectors from the embedding models and integrate the feature vectors into one classifier. To validate the effectiveness of the proposed model, we compare our method with two baseline classification models: (1) a model based on a single embedding model constructed with CSI-positive corpus only and (2) another model with CSI-negative corpus only. As a result, we indicate that the proposed model shows high accuracy, i.e., 0.934 of F1-score and 0.935 of area under the curve (AUC), which improves the baseline models by 1.76∼6.74% of F1-score and by 1.64∼6.98% of AUC.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
James Dzisi Gadze ◽  
Akua Acheampomaa Bamfo-Asante ◽  
Justice Owusu Agyemang ◽  
Henry Nunoo-Mensah ◽  
Kwasi Adu-Boahen Opare

Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a software-driven network through the separation of control and data planes. It addresses the problems of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such software-based networks. The concept of a centralized controller in SDN makes it a single point of attack as well as a single point of failure. In this paper, deep learning-based models, long-short term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was evaluated based on the accuracy, recall, and true negative rate. We compared the performance of the deep learning models with classical machine learning models. We further provide details on the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller. Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model, outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides a good trade-off between precision and recall, which makes it suitable for DDoS classification. In addition, it was realized that the split ratio of the training and testing datasets can give different results in the performance of a deep learning algorithm used in a specific work. The model achieved the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maiki Higa ◽  
Shinya Tanahara ◽  
Yoshitaka Adachi ◽  
Natsumi Ishiki ◽  
Shin Nakama ◽  
...  

AbstractIn this report, we propose a deep learning technique for high-accuracy estimation of the intensity class of a typhoon from a single satellite image, by incorporating meteorological domain knowledge. By using the Visual Geometric Group’s model, VGG-16, with images preprocessed with fisheye distortion, which enhances a typhoon’s eye, eyewall, and cloud distribution, we achieved much higher classification accuracy than that of a previous study, even with sequential-split validation. Through comparison of t-distributed stochastic neighbor embedding (t-SNE) plots for the feature maps of VGG with the original satellite images, we also verified that the fisheye preprocessing facilitated cluster formation, suggesting that our model could successfully extract image features related to the typhoon intensity class. Moreover, gradient-weighted class activation mapping (Grad-CAM) was applied to highlight the eye and the cloud distributions surrounding the eye, which are important regions for intensity classification; the results suggest that our model qualitatively gained a viewpoint similar to that of domain experts. A series of analyses revealed that the data-driven approach using only deep learning has limitations, and the integration of domain knowledge could bring new breakthroughs.


2021 ◽  
Vol 11 (13) ◽  
pp. 6017
Author(s):  
Gerivan Santos Junior ◽  
Janderson Ferreira ◽  
Cristian Millán-Arias ◽  
Ramiro Daniel ◽  
Alberto Casado Junior ◽  
...  

Cracks are pathologies whose appearance in ceramic tiles can cause various damages due to the coating system losing water tightness and impermeability functions. Besides, the detachment of a ceramic plate, exposing the building structure, can still reach people who move around the building. Manual inspection is the most common method for addressing this problem. However, it depends on the knowledge and experience of those who perform the analysis and demands a long time and a high cost to map the entire area. This work focuses on automated optical inspection to find faults in ceramic tiles performing the segmentation of cracks in ceramic images using deep learning to segment these defects. We propose an architecture for segmenting cracks in facades with Deep Learning that includes an image pre-processing step. We also propose the Ceramic Crack Database, a set of images to segment defects in ceramic tiles. The proposed model can adequately identify the crack even when it is close to or within the grout.


Author(s):  
Naresh Sammeta ◽  
Latha Parthiban

Recent healthcare systems are defined as highly complex and expensive. But it can be decreased with enhanced electronic health records (EHR) management, using blockchain technology. The healthcare sector in today’s world needs to address two major issues, namely data ownership and data security. Therefore, blockchain technology is employed to access and distribute the EHRs. With this motivation, this paper presents novel data ownership and secure medical data transmission model using optimal multiple key-based homomorphic encryption (MHE) with Hyperledger blockchain (OMHE-HBC). The presented OMHE-HBC model enables the patients to access their own data, provide permission to hospital authorities, revoke permission from hospital authorities, and permit emergency contacts. The proposed model involves the MHE technique to securely transmit the data to the cloud and prevent unauthorized access to it. Besides, the optimal key generation process in the MHE technique takes place using a hosted cuckoo optimization (HCO) algorithm. In addition, the proposed model enables sharing of EHRs by the use of multi-channel HBC, which makes use of one blockchain to save patient visits and another one for the medical institutions in recoding links that point to EHRs stored in external systems. A complete set of experiments were carried out in order to validate the performance of the suggested model, and the results were analyzed under many aspects. A comprehensive comparison of results analysis reveals that the suggested model outperforms the other techniques.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yudith Cardinale ◽  
Maria Alejandra Cornejo-Lupa ◽  
Alexander Pinto-De la Gala ◽  
Regina Ticona-Herrera

Purpose This study aims to the OQuaRE quality model to the developed methodology. Design/methodology/approach Ontologies are formal, well-defined and flexible representations of knowledge related to a specific domain. They provide the base to develop efficient and interoperable solutions. Hence, a proliferation of ontologies in many domains is unleashed. Then, it is necessary to define how to compare such ontologies to decide which one is the most suitable for the specific needs of users/developers. As the emerging development of ontologies, several studies have proposed criteria to evaluate them. Findings In a previous study, the authors propose a methodological process to qualitatively and quantitatively compare ontologies at Lexical, Structural and Domain Knowledge levels, considering correctness and quality perspectives. As the evaluation methods of the proposal are based on a golden-standard, it can be customized to compare ontologies in any domain. Practical implications To show the suitability of the proposal, the authors apply the methodological approach to conduct comparative studies of ontologies in two different domains, one in the robotic area, in particular for the simultaneous localization and mapping (SLAM) problem; and the other one, in the cultural heritage domain. With these cases of study, the authors demonstrate that with this methodological comparative process, we are able to identify the strengths and weaknesses of ontologies, as well as the gaps still needed to fill in the target domains. Originality/value Using these metrics and the quality model from OQuaRE, the authors are incorporating a standard of software engineering at the quality validation into the Semantic Web.


Sign in / Sign up

Export Citation Format

Share Document