Production of Micro Crystalline Cellulose from Tapioca Solid Waste: Effect of Acid Concentration on its Physico-chemical Properties

2020 ◽  
Vol 23 (5) ◽  
pp. 147-151
Author(s):  
Ansharullah Ansharullah ◽  
Nur Muhammad Abdillah Saenuddin ◽  
RH Fitri Faradilla ◽  
Asranuddin Asranudin ◽  
Asniar Asniar ◽  
...  

This study was aimed to examine the production of microcrystalline cellulose (MCC) from tapioca solid waste (TSW), using HCl hydrolysis with various concentrations, i.e., 2 N, 2.5 N, 3 N, and 3.5 N. MCC was produced by delignifying the TSW with NaOH 20%, and bleaching with NaOCl 3.5% to produce α-cellulose, and subsequently hydrolyzing α-cellulose with three different HCl concentrations to produce MCC. The physicochemical properties of MCC were then analyzed, including Scanning Electron Micrograph (SEM), X-ray diffraction (XRD), and FTIR spectra. The results showed that hydrolysis with 2.0 N HCl resulted in a higher yield of 61.28%, α-cellulose content of 56.33%, moisture 6.25%, pH of 6.54; ash 0.23%, and water solubility 0.34%. SEM analysis showed the morphology and size of the MCC produced were like those of a commercial MCC (Avicel PH101), while the XRD analysis showed the higher concentration of HCl gave rise to an increased crystalline index. FT-IR spectrum analysis indicated that TSW, MCC produced, and commercial MCC had similar functional groups.

2009 ◽  
Vol 87-88 ◽  
pp. 345-350
Author(s):  
Jian Qiang Zhang ◽  
Hui Xia Feng ◽  
Jian Hui Qiu

The wet surface modification process were used in this work to get the well lipophilic molybdenum disulfide (MoS2) powders and the modified MoS2 were filled into the polyphenylene sulfide (PPS) and polypropylene (PP) powders with different proportions to make polymeric based composites through hot-press molding equipment. The Fourier transform infrared spectrometer (FT-IR) analysis showed that the modification agents of stearic acid (SA), orγ-Methacryloxypropyl trimethoxy silane(KH570 or A-174), could react with the adsorption hydroxyl(−OH) of the MoS2 powders and finally form chemical coatings, the SA could form a layer of physics wrap too. The powder X-ray diffraction (XRD) analysis reveled that the SA or KH570 could not change the laminated structure of MoS2. The wearability testing showed that the composites filled by modified MoS2 owned the better wearable performances than the filled not one. From minimum to maximum, the wear mass rates of SA/MoS2/PP/PPS, KH570/MoS2/PP/PPS, PP/PPS were 0.7216, 5.4187 and 7.3198 percent in turns. Scanning electronic microscope (SEM) analysis showed the surface modification could uniformize the modified MoS2 to disperse in the polymeric based composites, and also reflect the abrasion mechanism which the particles and the adhering wear modes could all make the mass loss of the testing samples and they coexisted and could transform each other, the former would produce higher loss rates than the later and their leader status would gradually change from the particles wear to the adhering wear during the course of wearing-resisting tests.


Author(s):  
Hanna N. Shymanskaya ◽  
Evgeniya M. Dyatlova ◽  
Rostislav Yu. Popov

The possibility of replacing imported refractory clays and kaolines, which are part of porcelain stoneware mix, with refractory clay materials of the Republic of Belarus, in particular quartz-pyrophyllite-kaolinite rock and kaolin of “Dedovka” and “Sitnitsa” deposits, was explored. Porcelainised stoneware body formulations of JSC “Keramin” (Minsk, Republic of Belarus) was taken as the basis. It was found that physico-chemical properties and operational characteristics of porcelain tiles comply with the requirements of EN 14411: 2014, when adding 2.5–15.0 wt.% quartz-pyrophyllite-kaolinite rock. Incorporation of quartz-pyrophyllite-kaolinite rock in percentage higher than 15.0 wt.% resulted in reduction in the total amount of the vitreous phase of porcelain stoneware, thus increasing water absorption, apparent porosity as well as reduces flexural strength and bulk density. The main crystalline phases in the synthesized materials were quartz and mullite. It was also revealed that imported kaolines could be completely replaced by kaolines of “Dedovka” and “Sitnitsa” deposits. In this, required physico-chemical properties and operational characteristics of porcelain tiles was maintained. SEM analysis revealed that specimens synthesized using considered kaolines show quite dense microstructures, with a high degree of vitrification. The gas phase in these materials was practically absent, the presence of only individual small irregular pores was found. XRD analysis indicated that the major phases were mullite, quartz, microcline and hematite. It was hematite that gives the obtained porcelain stoneware samples a dark gray color scheme. Thus, the use of domestic refractory clay raw materials provides import substitution and declining production costs.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 277 ◽  
Author(s):  
Pavel Zoufalý ◽  
Erik Čižmár ◽  
Juraj Kuchár ◽  
Radovan Herchel

Two novel coordination compounds containing heterocyclic bidentate N,N-donor ligand 2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (fpo) were synthesized. A general formula for compounds originating from perchlorates of iron, cobalt, and fpo can be written as: [M(fpo)2(H2O)2](ClO4)2 (M = Fe(II) for (1) Co(II) for (2)). The characterization of compounds was performed by general physico-chemical methods—elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) in case of organics, and single crystal X-ray diffraction (sXRD). Moreover, magneto-chemical properties were studied employing measurements in static field (DC) for 1 and X-band EPR (Electron paramagnetic resonance), direct current (DC), and alternating current (AC) magnetic measurements in case of 2. The analysis of DC magnetic properties revealed a high spin arrangement in 1, significant rhombicity for both complexes, and large magnetic anisotropy in 2 (D = −21.2 cm−1). Moreover, 2 showed field-induced slow relaxation of the magnetization (Ueff = 65.3 K). EPR spectroscopy and ab initio calculations (CASSCF/NEVPT2) confirmed the presence of easy axis anisotropy and the importance of the second coordination sphere.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012009
Author(s):  
R Nedjai ◽  
N A Kabbashi ◽  
M Z Alam ◽  
M F R Al-Khatib

Abstract Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.


2006 ◽  
Vol 309-311 ◽  
pp. 697-700 ◽  
Author(s):  
Racquel Z. LeGeros ◽  
Dindo Q. Mijares ◽  
Fang Yao ◽  
John P. LeGeros ◽  
T. Bromage ◽  
...  

Fluoride, when incorporated in the apatite, stabilizes the structure. The purpose of this study was to determine the consequences of fluoride (F) substitution on the physico-chemical properties of apatites. F-containing apatites were prepared by precipitation or by hydrolysis of CaHPO4 in solutions containing different F concentrations and characterized using x-ray diffraction, FT-IR spectroscopy, scanning electron microscopy, thermogravimetry and chemical analyses. Results showed that F incorporation have the following effects: (a) decrease in a-axis dimension, (b) increase in crystal size and thickness, (c) decrease in calcium deficiency, and (d) lower solubility.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Stefano Alberti ◽  
Irene Basciu ◽  
Marco Vocciante ◽  
Maurizio Ferretti

In this contribution, the photoactivity upon activation by simulated sunlight of zinc oxide (ZnO) obtained from two different synthetic pathways (Acetate and Nitrate) is investigated for water purification. Different reagents and processes were exploited to obtain ZnO nanoparticles. Products have been characterized by means of X-Ray Diffraction, Scanning Electron Microscopy along with Energy Dispersive Spectrometer, Dynamic Light Scattering, and Diffuse Reflectance Measurements, to highlight the different outcomes ascribable to each synthesis. A comparison of characteristics and performances was also carried out with respect to commercial ZnO. Nanoparticles of this semiconductor can be obtained as aggregates with different degrees of purity, porosity, and shape, and their physical-chemical properties have been addressed to the specific use in wastewater treatment, testing their effectiveness on the photocatalytic degradation of methylene blue (MB) as a model pollutant. Excluding the commercial sample, experimental results evidenced a better photocatalytic behavior for the ZnO Nitrate sample annealed at 500 °C, which was found to be pure and stable in water, suggesting that ZnO could be effectively exploited as a heterogeneous photocatalyst for the degradation of emerging pollutants in water, provided that thermal treatment is included in the synthetic process.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Gao Yurong ◽  
Li Dapeng

AbstractCorn starch/polyvinyl alcohol (PVA)/glycerol composite films incorporated with ε-polylysine were prepared, and their properties were investigated. The Fourier-transform infrared (FTIR) spectroscopy indicated that the interactions happened between the amino group of ε-polylysine and hydroxyl group starch/PVA composite films. X-ray diffraction (XRD) analysis showed that the addition of ε-polylysine decreased the intensity of all crystal peaks. Thermogravimetric (TGA) analysis suggested that ε-polylysine improved the thermal stability of composite films. Scanning electron microscopic (SEM) analysis showed that the upper surface of composite films incorporated with ε-polylysine presented more compact and flat surface. The antimicrobial activity of the composite film progressively increased with the increasing of ε-polylysine concentration (P < 0.05). The tensile strength, elongation at break and water absorption significantly increased, whereas water solubility decreased with the increasing of ε-polylysine concentration (P < 0.05). Therefore, the corn starch/PVA/glycerol composite films incorporated with ε-polylysine had good mechanical, physical and antimicrobial properties and could have potential application as a novel antimicrobial packaging material.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2013 ◽  
Vol 832 ◽  
pp. 589-595 ◽  
Author(s):  
N.A. Edama ◽  
A. Sulaiman ◽  
K.H. Ku Hamid ◽  
M.N. Muhd Rodhi ◽  
Mohibah Musa ◽  
...  

This study analyzed the effects of sulphuric acid (H2SO4) treatment on pysico-chemical properties and morphological changes of clay obtained from Sg. Sayong, Perak. The clay was ground and sieved to <150μm and treated with different concentrations of H2SO4. The treatment was completed by refluxing the clay with different concentration of H2SO4 (1M, 5M and 10M ) at 100 °C for 4 hours and followed by calcination at 500 °C for 1 hour. The physic-chemical properties and morphological changes of the untreated and treated clay were compared using Surface Area Analyser, X-Ray Diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), X-Ray Diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that acid treatment of 5M increased the surface area from 25 m2/g to 75 m2/g and the pore volume increased from 0.1518 cc/g to 0.3546 cc/g. The nanopore size of the clay decreased from 24.8 nm to 19.4 nm after treated with acid. This can be explained due to the elimination of the exchangeable cations and generation of microporosity. The results of XRF showed SiO2 increased from 58.34% to 74.52% and Al2O3 reduced from 34.6% to 18.31%. The mineral oxides such as Fe2O3, MgO, CaO, K2O and TiO2 also reduced. This concluded that H2SO4 treatment has led to significant removal of octahedral Al3+, Fe3+ cations and other impurities. In conclusion, this study showed the physico-chemical properties and morphology of Sayong clay were improved once treated with H2SO4 and therefore suggests better supporting material for enzyme immobilization.


2006 ◽  
Vol 118 ◽  
pp. 639-644
Author(s):  
Hye Sung Kim ◽  
Su Chak Ryu

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) powders is synthesized using the mixed powders of CaCO3 refined from oyster shells and phosphoric acid (H3PO4-98%, Daejung) as starting materials. The characteristic evaluation and chemical analysis of the synthesized powders is performed by X-ray diffraction (XRD), Fourier-transformed infra-red spectroscopy (FT-IR), and inductively-coupled plasma atomic emission spectroscopy (ICPAES). XRD analysis of synthetic powder by heat treatment at 1300°C for 2hrs shows only HAp peaks corresponding to stoichiometric HAp. It is confirmed by ICP-AES test that impurities such as Zn, In, Ti, Ba, Cd, Pb, and Mn, is not detected at all, but small amounts of Ti and Be is observed (0.099ppm Ti and 0.002ppm Ba). Variation of bone density is measured by giving medication of HAp powder with drinking water into human body continuously for three month. After the medication, the bone density is higher than the medication before. This means that HAp powder made from this process can be used as improver of bone density.


Sign in / Sign up

Export Citation Format

Share Document