scholarly journals A galvanic-based dissolved oxygen level monitoring sensor system in freshwater ponds

2021 ◽  
Vol 9 (2) ◽  
pp. 83-89
Author(s):  
Damar Wicaksono ◽  
Tatag Lindu Bhakti ◽  
Restiadi Bayu Taruno ◽  
Melvin Rahma Sayuga Subroto ◽  
Anita Mustikasari

This study aims to develop low-cost and environmentally friendly material galvanic-based dissolved oxygen sensors. A Dissolved oxygen (DO) sensor has been designed and fabricated on an 85 x 205 mm galvanic-based. The sensor structure device consists of Al-Zn reference layer electrode, Ag/AgCl active electrode, 120ml KCl electrolyte solvent 0,1 M, and closed by TiO2 membrane (PTFE). The Al-Zn formation reference electrode was done by Ag layer chlorination using FeCl3, and the TiO2 membrane was formed by TiO2 paste screen printing. The test was done to measure the sensor’s performance based on the current-voltage characteristics between 1.0 and 1.8 V. The results showed that a stable diffusion current was obtained when the input voltage was 1.5 V, resulting in the best sensor performance with a sensitivity of 0.7866 μA L/mg and a stable step response time of 3 mins. This prototype sensor showed high potential for prototyping for a low-cost water quality monitoring system.

2018 ◽  
Vol 917 ◽  
pp. 59-63 ◽  
Author(s):  
Goib Wiranto ◽  
Slamet Widodo ◽  
I Dewa Putu Hermida ◽  
Roberth V. Manurung ◽  
Gandi Sugandi ◽  
...  

A Dissolved Oxygen (DO) sensor has been designed and fabricated on an 8.5 x 22.5 mm Alumina substrate using thick film technology. The structure of the sensor device consisted of AgPd working/counter electrode, Ag/AgCl reference electrode, RuO2active layer, KCl electrolyte, and TiO2membrane. Formation of the Ag/AgCl reference electrode was done by chlorination of Ag layer using FeCl3, and the TiO2membrane was formed by screen printing of TiO2paste. Measurement was done to study the sensor’s performance based from the current-voltage characteristics between 1.1 – 1.6 V. The results showed that a stable diffusion current was obtained when the input voltage was 1.4 V, resulting in the best sensor performance with a sensitivity of 0.560 μA l/mg and a stable step response time of 4 min. The device showed highly potential to be used as candidate for online water quality monitoring system.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 474 ◽  
Author(s):  
Bei Wang ◽  
Manuel Baeuscher ◽  
Xiaodong Hu ◽  
Markus Woehrmann ◽  
Katharina Becker ◽  
...  

A novel capacitive sensor for measuring the water-level and monitoring the water quality has been developed in this work by using an enhanced screen printing technology. A commonly used environment-friendly conductive polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) for conductive sensors has a limited conductivity due to its high sheet resistance. A physical treatment performed during the printing process has reduced the sheet resistance of printed PEDOT:PSS on polyethylenterephthalat (PET) substrate from 264.39 Ω/sq to 23.44 Ω/sq. The adhesion bonding force between printed PEDOT:PSS and the substrate PET is increased by using chemical treatment and tested using a newly designed adhesive peeling force test. Using the economical conductive ink PEDOT:PSS with this new physical treatment, our capacitive sensors are cost-efficient and have a sensitivity of up to 1.25 pF/mm.


2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

2012 ◽  
Vol 95 (3) ◽  
pp. 773-777 ◽  
Author(s):  
Leonardo Luiz Okumura ◽  
Luis Octávio Regasini Regasini ◽  
Daniara Cristina Fernandes ◽  
Dulce Helena Siqueira da Silva ◽  
Maria Valnice Boldrin Zanoni ◽  
...  

Abstract A fast, low-cost, convenient, and especially sensitive voltammetric screening approach for the study of the antioxidant properties of isoquercitrin and pedalitin from Pterogyne nitens is suggested in this work. These flavonoids were investigated for their redox properties using cyclic voltammetry in nonaqueous media using N,N-dimethylformamide and tetrabutylammonium tetrafluorborate as the supporting electrolyte, a glassy carbon working electrode, Ag|AgCl reference electrode, and Pt bare wire counter electrode. The comparative analysis of the activity of rutin has also been carried out. Moreover, combining HPLC with an electrochemical detector allowed qualitative and quantitative detection of micromolecules (e.g., isoquercitrin and pedalitin) that showed antioxidant activities. These results were then correlated to the inhibition of β-carotene bleaching determined by TLC autographic assay and to structural features of the flavonoids.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2016 ◽  
Author(s):  
Wan Jiao ◽  
Gayle Hagler ◽  
Ronald Williams ◽  
Robert Sharpe ◽  
Ryan Brown ◽  
...  

Abstract. Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~ 2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, −0.25 to 0.76, −0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r  0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (2 nodes) and PM (4 nodes) data for an 8 month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to near-by traffic emissions. Overall, this study demonstrates a straightforward methodology for establishing low-cost air quality sensor performance in a real-world setting and demonstrates the feasibility of deploying a local sensor network to measure ambient air quality trends.


2017 ◽  
Vol 20 (2) ◽  
pp. 85
Author(s):  
Pawan Whig ◽  
Syed Naseem Ahmad ◽  
Surinder Kumar

In this paper, a novel circuit is presented which overcome a serious limitation found in case of multiple sensors system. In this novel system design only one reference electrode and few active components used that makes the implementation of a low-cost system for the supervision of water quality. Photo Catalytic Sensor (PCS) estimates the parameter BOD (Biological Oxygen Demand) which is generally used to estimate quality of water. The system proposed in this paper involves a balanced bridge approach using few electronic components that provides a correlation in the input-output signals of low-cost sensors. The main reason of employing a readout circuit to PCS circuitry, is the fact that the fluctuation of O2 influences the threshold voltage, which is internal parameter of the FET and can manifest itself as a voltage signal at output but as a function of the trans conductance gain. The trans-conductance is a passive parameter and in order to derive voltage or current signal from its fluctuations the sensor has to be attached to readout circuit. This circuit provides high sensitivity to the changes in percentage of O2 in the solution.


1985 ◽  
Vol 93 (6) ◽  
pp. 759-764 ◽  
Author(s):  
James R. Woods ◽  
Mark A. Plessinger

Eleven fetal lambs were tested for auditory brain stem responses (ABRs) at 105 and 90 db sound pressure level from 110 to 116 days until 133 days gestation. ABRs were elicited in response to 1200 clicks, presented at 16 clicks/sec, from a hearing aid receiver secured in the fetal external ear canal and recorded from subdermal stainless steel electrodes at the vertex (active electrode) and anterior pinna (reference electrode). Six term newborn lambs were tested similarly for ABR comparison. No fetal ABRs appeared before 117 days gestation. Thereafter, the ABRs exhibited decreasing peak latencies with increasing stimulus intensity and fetal age. Newborn ABR latency measurements were compared with predicted newborn values generated from linear regression analysis of fetal data. Newborn latencies to waves I and II approximated predicted values. Newborn latencies to waves III, IV, and V were much shorter than predicted, suggesting rapid maturation of higher brain stem and midbrain neurogenerators during late fetal development.


Author(s):  
Ryan Ganesha Calibra ◽  
Irfan Ardiansah ◽  
Nurpilihan Bafdal

Water quality is very important for plant’s growth and development. Some of the important part of the water qualities are TDS(Total Dissolved Solid), EC(Electrical Conductivity), pH(Acidity). Cultivation inside a greenhouse provides some benefits but also have some deficiency, such as lack of soil nutrition because most plants inside greenhouse uses non soil growing media. To overcome the deficiency, An automated and remote system is needed to ease the controlling of water quality and nutrition feeding to the plant. This study aims to create low-cost greenhouse water quality monitoring that automatically display the real time data on a website. This research is done by using an engineering design methods. This system can be integrated with auto-pot watering system . The result shows that the system can adjust the TDS and pH as programmed, which are TDS= 1000-1200, and pH =5.5-6.5(these are recommended needs for Tomato plant). The TDS sensor in this reseach have the limitation of reading 0~1500ppm.


Sign in / Sign up

Export Citation Format

Share Document