Konsentrasi Polyfenol pada Teh Hitam Celup Komersial Produksi Perkebunan Teh di Jawa Tengah

METANA ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 55-60
Author(s):  
Edy Supriyo ◽  
Isti Pudjihastuti

Teh merupakan minuman yang dihasilkan dari pucuk daun tanaman Camellia sinensis  yang tumbuh di pegunungan pada ketinggian 600–2500 m dpl. Teh hitam merupakan jenis teh yang banyak dikonsumsi masyarakat Indonesia. Teh ini diproduksi dengan cara fermentasi melalui proses oksidasi enzimatis katekin oleh polifenol oksidase. Teh hitam yang dikemas dalam bentuk the celup banyak digemari konsumen.  Tujuan dari penelitian ini mengetahui konsentrasi polyfenol dalam teh hitam celup komersial. Sampel teh hitam celup komersial dengan merk dagang TP, TDT, TB, TL,  TD, dan TM diproduksi oleh enam perkebunan teh di Jawa Tengah yang diperoleh secara acak dari swalayan di Kota Semarang.   Kandungan polyfenol pada sampel teh hitam celup dianalisa dengan menggunakan spetrofotometer UV-Vis pada panjang gelombang 725nm. Hasil penelitian menunjukkan bahwa teh hitam celup komersial yang beredar di Kota Semarang telah memenuhi  standard SNI 3753–2014, dengan rata-rata konsentrasi polyfenol 8,83-43,63 %b/b. Analisa Zscore  menunjukkan tidak ada perbedaan yang sangat nyata antar konsentrasi polyfenol di enam sampel teh hitam celup komersial, hal ini dimungkinkan dengan adanya standarisasi proses produksi teh hitam di berbagai industri teh di Indonesia. Dan teh hitam celup komersial TDT mempunyai konsentrasi polyfenol diatas rata-rata yaitu 43,63 % b/b.    Tea is a drink produced from the leaves of the Camellia sinensis plant that thrives in the mountains at an altitude of 600–2500 m above sea level. Black tea is a type of tea that is widely consumed by Indonesian people. Black tea is produced by fermentation, namely the process of enzymatic oxidation of catechins by polyphenol oxidase. Black tea is produced in several packages, including as black tea bags. The purpose of this study was to determine the concentration of polyphenols in commercial black tea bags. Samples of commercial black tea bags with the trademarks TP, TDT, TB, TL, TD, and TM were produced by six tea plantations in Central Java which were obtained randomly from supermarkets/stores in Semarang City. The polyphenol content in black teabag samples was analyzed using a UV-Vis spectrophotometer at a wavelength of 725nm. The results showed that the commercial black tea bags marketed in the Semarang City had met the standards of SNI 3753–2014, with an average polyphenol concentration of 8.83-43.63% w/w. The Zscore analysis showed that there was no significant difference between the concentrations of polyphenols in the six samples of commercial black tea bags, this may cause by the standardization of black tea production processes in various tea industries in Indonesia, but commercial black tea bags with the trademark TDT had polyphenol concentrations above the average is 43.63% w/w.

2021 ◽  
Author(s):  
Christopher Nyarukowa

Camellia sinensis (L.) O. Kuntze (tea) is one of the most widely consumed beverages across the world, serving as an essential commodity crop for several developing countries. A bulk of tea’s health-promoting properties are attributed to the antioxidant properties of EGCg, its predominant polyphenol. As a result of these health benefits, tea production and consumption has expanded and promoted the development of tea industries globally. Tea cultivation is dependent on a good distribution of rainfall, and the current changes in climate pose a significant threat to its global supply chains. Through the efforts of the International Centre for Tropical Agriculture (CIAT), predictions of future climate changes in the tea growing regions of Kenya between now and 2050 have been generated. A study was conducted to develop models to identify key tea growing regions that will remain ideal for tea farming and also investigate the metabolomic differences between 243 drought susceptible NonCommercial (NComm) and 60 Commercial (Comm) cultivars. Non-targeted, high-resolution UPLC-MS was used to attain a new profound understanding of the metabolomic multiplicity between the Comm and NComm groups and to elucidate their association with tea liquor quality and drought tolerance. Several metabolites, namely argininosuccinate, caffeic acid, caffeine, catechin, citric acid, epicatechin, epigallocatechin gallate, gallic acid, gluconic acid, glucose, maltose, quercetin and theanine were found to clearly differentiate between the Comm and NComm cultivars. These detected metabolites were linked to improved tea quality and drought tolerance in the Comm cultivars.


2020 ◽  
Vol 5 (2) ◽  
pp. 86
Author(s):  
Ika Betty Widyastuti ◽  
Prapto Yudono ◽  
Eka Tarwaca Susila Putra

The research aimed to propagate tea plants by air layering in order to obtain new plants with shorter immature plants period (TBM), which is 1.5 years, by utilizing wasted branches from routine clean pruning activities in tea plantations. The research was conducted from August 2018 to January 2019 at tea plantation of PT. Pagilaran, Batang, Central Java. Experiment using single factor treatment was arranged in a Completely Randomized Design with three replications. The treatment was layering media, consisting of husk charcoal, moss, and cocopeat, which were applied on GMB 7 and GMB 9 clones. The results showed significant effects of the layering media on the levels of auxin and cytokinin in GMB 7. The highest levels were found in the husk charcoal and moss media. Analysis of sucrose, glucose and total sugar as well as the physiological analysis of the air layering roots showed no significant difference in the fresh weight, dry weight, volume, surface area, diameter, and length of the roots. Husk charcoal resulted in the highest success rate of the air layering in GMB 7, which was 100%. Meanwhile, GMB 9 showed significant difference only in the auxin levels. There was no significant effect of layering media on the analysis of sucrose, glucose and total sugar as well as on the physiological analysis of the air layering roots. Both husk charcoal and moss media resulted in the highest success rate of the air layering in GMB 9, which was 58.33%.   


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 212 ◽  
Author(s):  
Titus S. Imboma ◽  
De-ping Gao ◽  
Min-sheng You ◽  
Shijun You ◽  
Gabor L Lövei

Tea (Camellia sinensis) is an important food product with thousands of years of human use. Being a non-washable food, no pesticide residues are allowed, which increases the importance of natural means of plant protection. Predation, a component of natural pest control, is an important contributor to this, but its level and sustainability are not known in most of the areas of tea production. We quantified predation intensity using the artificial sentinel prey method in a tea-growing landscape containing remnants of the original forest vegetation in Fujian Province, China. The most common predators were chewing arthropods (49.8% of predation events) and birds (48.1%). Overall, predation rates at the edges of forest fragments (18.9% d-1) were lower than either in fragment interiors (25.4%d−1) or in the surrounding tea plantations (19.2–24.1%d-1). Arthropod predation was higher inside, and at the edge of, forest fragments than within plantations, and generally decreased with increasing distance from a fragment edge, indicating limited spillover of arthropod predators from the native habitat remnants to the cultivated matrix at the local scale. Bird predation, though, showed a different trend: it was lower on the inside of forest fragments than in the tea planation, and bird attack rates increased at increasing distances (up to 40 m) from the forest fragment edge. We also found a reciprocal relationship between attack rates by birds and arthropods, suggesting intra-guild predation. Measures protecting arthropod natural enemies could increase the combined pest suppression effect, contributing to pesticide-free tea production in China.


Author(s):  
İlkay Koca ◽  
Şeyda Bostancı

Tea, one of the most widely consumed beverages in the world, is produced from the leaves of the plant Camellia sinensis L.. Tea has important physiological properties and potential health benefits due to the presence of compounds such as polyphenols, amino acids, vitamins, carbohydrates, caffeine, and purine alkaloids. Tea is produced in three types as green tea (unfermented), oolong tea (partially fermented), and black tea (fully fermented). Black tea is consumed worldwide, whereas green and oolong teas are consumed mainly in Asia and North Africa. The total tea production in the world consists of about 78% black tea, 20% green tea and


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 592 ◽  
Author(s):  
Abraham M. Abraham ◽  
Reem M. Alnemari ◽  
Jana Brüßler ◽  
Cornelia M. Keck

Antioxidants are recommended to prevent and treat oxidative stress diseases. Plants are a balanced source of natural antioxidants, but the poor solubility of plant active molecules in aqueous media can be a problem for the formulation of pharmaceutical products. The potential of PlantCrystal technology is known to improve the extraction efficacy and antioxidant capacity (AOC) of different plants. However, it is not yet proved for plant waste. Black tea (BT) infusion is consumed worldwide and thus a huge amount of waste occurs as a result. Therefore, BT waste was recycled into PlantCrystals using small-scale bead milling. Their characteristics were compared with the bulk-materials and tea infusion, including particle size and antioxidant capacity (AOC) in-vitro. Waste PlantCrystals possessed a size of about 280 nm. Their AOC increased with decreasing size according to the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) assays. The AOC of the waste increased about nine-fold upon nanonization, leading to a significantly higher AOC than the bulk-waste and showed no significant difference to the infusion and the used standard according to DPPH assay. Based on the results, it is confirmed that the PlantCrystal technology represents a natural, cost-effective plant-waste recycling method and presents an alternative source of antioxidant phenolic compounds.


2008 ◽  
Vol 118 (3) ◽  
pp. 373-377 ◽  
Author(s):  
W.D. Ratnasooriya ◽  
T.S.P. Fernando

Sign in / Sign up

Export Citation Format

Share Document