scholarly journals Chromium induced changes in growth and physiological attributes of Chicory (Cichorium intybus L), an important medicinal plant

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Ashyana Kouser ◽  
Athar Ali Khan

This study was conducted to determine the impact of different concentrations (25, 37.5 and 50 mg kg-1 soil) of chromium (Cr) on growth, photosynthetic pigments, protein content, proline content, activities of antioxidant enzymes and seed yield of Cichorium intybus in a pot experiment. The results revealed that all the Cr treatments significantly (P </= 0.05) reduced the growth, photosynthetic pigments (chlorophyll a, chlorophyll b and total chlorophyll and carotenoids contents), protein content and seed yield in C. intybus. The activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and proline content in C. intybus leaves increased significantly (P </= 0.05) with increasing levels of Cr treatments. Cr accumulation was found greater in the roots than in the shoots and enhanced with increasing Cr concentrations. Hence, C. intybus may serve as a bio-meter of Cr in Cr contaminated soils.

Author(s):  
Justin Masih

The effects of ultraviolet-B (UV-B) radiations were studied on strawberry. The transplanted plants were irradiated with UV-B (280-320 nm) for 30, 60, 90 and 120 minutes on 20th, 40th, and 60th days after transferring. The enhanced UV-B radiation caused a negative effect on photosynthetic pigments and protein content of strawberry. Distinct decreased as a result of UV-B irradiation in contents of chlorophyll a, chlorophyll b, carotenoids and protein content was observed in strawberry. The impact of increase of duration of UV-B irradiation was also observed and found to be directly proportional.


2020 ◽  
Vol 48 (4) ◽  
pp. 2228-2243
Author(s):  
Jaber KHORDADI VARAMIN ◽  
Farzad FANOODI ◽  
Jafar MASOUD SINAKI ◽  
Shahram REZVAN ◽  
Ali DAMAVANDI

Applying elicitors and nano-fertilizer has been recommended to enhance the growth and yield of secondary metabolites in herbs and medicinal plants under water-limited stress. However, less information is available on the effects of chitosan and nano-magnesium fertilizers on sesame seed yield, oil content, and physiological traits in the presence of nano-magnesium chelate (nano-Mg) under water-limited supply. In this regard, field experiments as a split-factorial experiment was performed based on randomized blocks in three replicates in Varamin city, south of Tehran, Iran, during 2015-2016 to evaluate the impact of chitosan and nano-Mg on physiological, seed, and oil traits of sesame. Irrigation cut-off based on BBCH scale was considered as the main factor including normal irrigation (I1), irrigation cut-off in 75 (I2), and 65 BBCH (I3) stages. Secondary factors as the subplot included ‘Oltan’ (C1) and ‘Dashtestan-2’ (C2) sesame cultivars, and foliar application of nano-Mg (application and non-application) and chitosan (control (CH1), foliar application of 4.8 g L-1 in 65 BBCH (CH2), and 6.4 g L-1 in 75 BBCH stages (CH3)). Further, free proline content, total sugars, the activity of antioxidant enzymes including catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1), and ascorbate peroxidase (APX, EC 1.11.1.11), photosynthetic pigments content, seed yield, and oil content were evaluated in the next stage. Based on the results, irrigation cut-off in 65 BBCH stage (flowering) significantly increased free proline content, total sugars, and the activity of antioxidant enzymes, CAT, POD, and APX. However, chlorophyll a, b, and total contents, seed yield, oil percentage, and yield decreased under water stress. ‘Dashtestan-2’ cultivar had the highest seed yield and oil content, and more tolerant cultivar under water-limited stress. Interestingly, the production of proline content and total sugars increased while the activity of antioxidant enzymes, CAT, POD, and APX decreased under application of nano-Mg and CH2, which influenced both sesame response and seed attributes. As a result, the production of some physiological traits in sesame cultivars may be regulated by adjusting the irrigating practices. Finally, the co-application of nano-Mg and CH2 increased the seed yield and oil content of sesame under limited water supply in the arid and semi-arid region.


2020 ◽  
pp. 111-116
Author(s):  
Bisma Malik ◽  
Tanveer Bilal Pirzadah

Lead (Pb) toxicity is a serious environmental problem as it affects the food production by interfering plant growth and development, thus declines the production yield. In the present research work, Cichorium intybus L. plants were subjected to different concentrations of Pb (0, 100, 200 and 300µM) upto 46days to determine the oxidative stress. The length of root and shoot, accumulation of biomass were estimated along with the changes in biomarkers (H2O2 and TBARS). Further proteomic analysis of chicory leaves (46days old) at 300µM Pb concentration was done to identify the proteins of interest. The root growth increased significantly in a concentration-dependent manner however; shoot growth, biomass accumulation declined significantly with Pb stress compared to control. Changes in biomarkers (H2O2 and TBARS) content elevated with the increment in the concentration of metal treatment but exhibited a gradual decline at 300µM Pb treatment.. Proteomics data of 46days old chicory plants under 300 µM Pb stress analyzed by PDQuest software detected approximately 168 protein spots on each gel and 81 spots were differentially expressed in which 16 were up-regulated and 13 were down-regulated. The present study suggested that chicory possess a strong antioxidative defense system to combat Pb stress and thus could be explored for cultivation in Pb contaminated soils.


2014 ◽  
Vol 60 (2) ◽  
pp. 255-272 ◽  
Author(s):  
Paule Vasseur ◽  
Marc Bonnard

Abstract Pollutant dynamics and bioavailability greatly differ in soil and aquatic systems. Therefore, specific approaches and models are needed to assess the impact of soil contamination to terrestrial ecosystems. Earthworms among other soil invertebrates have received more attention because of their ecological importance. They represent a dominant part of the soil biomass and are soil engineers regulating important soil processes, notably fertilization. The release in soils of pollutants known for their persistence and/or their toxicity is a concern. Exposure of terrestrial species to pollutants that may alter genomic function has become an increasing topic of research in the last decade. Indeed, genome disturbances due to genetic and epigenetic mechanisms may impair growth, as well as reproduction and population dynamics in the long term. Despite their importance in gene expression, epigenetic mechanisms are not yet understood in soil invertebrates. Until now, pollutant-induced changes in genome expression in natural biota are still being studied through structural alteration of DNA. The first biomarker relating to genotoxicant exposure in earthworms from multi-contaminated soils reported is DNA adducts measurements. It has been replaced by DNA breakage measured by the Comet assay, now more commonly used. Functional genomic changes are now being explored owing to molecular “omic” technologies. Approaches, objectives and results are overviewed herein. The focus is on studies dealing with genotoxicity and populational effects established from environmentally-relevant experiments and in situ studies.


2009 ◽  
Vol 3 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Faten Dhawi ◽  
Jameel M. Al-Khayri

Growth, development and plants productivity are usually affected by photosynthetic pigments activity. Magnetic fields are known to induce biochemical changes and could be used as a stimulator for growth related reactions including affecting photosynthetic pigments. The impact of magnetic field strengths on chlorophyll and carotenoids were investigated in this study through the use of date palm (Phoenix dactylifera L.) seedlings. To study the effects of magnetic treatments on photosynthetic pigments, date palm seedlings were exposed to magnetic fields in two experiments. In the first experiment, seedlings were treated with static magnetic field at three levels of (10, 50 and 100 mT) and different durations (30, 60, 180, 240 and 360 min). At the second experiment, seedlings were treated with alternating magnetic field at 1.5 T for different durations (1, 5, 10 and 15 min). The photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids and total pigments) were assayed using spectrophotometric methods. Results indicated that pigments content (chlorophyll a, chlorophyll b, carotenoids and total pigments) was significantly increased under static magnetic field. The highest measurements were recorded at 100 mT, after 360 min of exposure. On the other hand, alternating magnetic field has decreased photosynthetic pigments content after 10 min of treatment with 1.5 T. Low magnetic field doses had a simulative effect on photosynthetic pigments whereas high doses had a negative effect. Chlorophyll a and carotenoids were more affected than chlorophyll b. Magnetic fields treatment could be used to enhance plant growth and productivity.


2019 ◽  
pp. 1856-1864 ◽  
Author(s):  
André Dias de Azevedo Neto ◽  
Renata Velasques Menezes ◽  
Hans Raj Gheyi ◽  
Petterson Costa Conceição Silva ◽  
Alide Mitsue Watanabe Cova ◽  
...  

The aim of this study was to evaluate the effect of salt stress on the contents of inorganic and organic solutes, pigments and essential oil in two basil genotypes cultivated in hydroponic system. The experiment was carried out in a greenhouse. Treatments were distributed in randomized blocks, in a 2 × 2 factorial arrangement, corresponding to two contrasting genotypes (‘Toscano folha de alface’ (TFA) and ‘Gennaro de menta’ (GM)) and two salt levels (0 - control and 80 mM NaCl), with six replicates. The Na+, Cl- and K+ accumulation in the leaves, stem and roots did not differ between genotypes. Salt stress increased free amino acids accumulation in the leaves of the TFA genotype. The proline content increased in the roots of both genotypes. However, in GM genotype, the proline content (3.12 mmol g-1 dry mass (DM)) was around 2-fold greater when compared to TFA genotype (1.48 mmol g-1 DM). The salt stress increased the photosynthetic pigments content only in the GM genotype. Inorganic solutes and photosynthetic pigments content are not good indicators of salt-tolerance in the studied genotypes. Under salt stress, there was increase in oil content in GM genotype, while the TFA genotype showed a decrease compared to control treatment. In spite of showing lower oil content, the TFA genotype showed higher yield and productivity of essential oil compared to GM under salt stress conditions.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


1989 ◽  
Vol 62 (04) ◽  
pp. 1057-1061 ◽  
Author(s):  
Marcus E Carr ◽  
Patrick L Powers

SummaryThis study was performed to quantitate the impact of several glycosaminoglycans (GAG) on fibrin assembly and structure. Gel formation was monitored as the increase in optical density at 633 nm subsequent to thrombin (2 NIH u/ml) or atroxin (0.10 mg/ml) addition to solutions of buffered fibrinogen (1 mg/ml) or plasma. Gel absorbance was measured as a function of wavelength (400 to 800 nm) and gel fiber diameter and mass/length ratio (μ) were calculated. Chondroitin sulfate A (CSA)shortened the lag phase, enhanced the maximal rate of turbidity increase, and increased the final gel turbidity of fibrin gels formed by thrombin or atroxin. CSA (16 mg/ml) increased fiber μ from 1.3 to 3.1 × 1013 dalton/cm and fiber radius from 6.0 to 8.6 × 10-6 cm in thrombin-induced gels. μ increased from 0.7 to 2.7 × 1013 dalton/cm and fiber radius from 4 to 7.8 × 10-6 cm for atroxin-induced gels. Above 16 mg/ml, CSA caused fibrinogen precipitation in purified solutions but not in plasma. CSA inhibited thrombin-induced plasma clotting of plasma but effects in atroxin-mediated plasma gels paralleled those seen in purified solutions. Chondroitin sulfate B (CSB)-induced changes in fibrin were similar but slightly less dramatic than those seen with CSA. μ increased from 0.9 to 2.0 × 1013 dalton/cm for thrombin-induced fibrin gels and from 0.8 to 2.3 × 1013 dalton/cm for atroxininduced gels. Low molecular weight heparin (Mr = 5100) slowed fibrin assembly and reduced fiber size by 50% in thrombininduced gels. Changes in μ of atroxin-induced gels were much less pronounced (<20%). This study documents pronounced GAGinduced changes in fibrin structure which vary with GAG species and may mediate significant physiologic functions.


Author(s):  
Dolapo Bola Adelabu ◽  
Emile Bredenhand ◽  
Sean van der Merwe ◽  
Angelinus Cornelius Franke

Abstract To exploit the potential of ecological intensification during sunflower cropping, it is crucial to understand the potential synergies between crop management and ecosystem services. We therefore examined the effect of pollination intensification on sunflower yield and productivity under various levels of soil fertilization over two seasons in the eastern Free State, South Africa. We manipulated soil fertility with fertilizer applications and pollination with exclusion bags. We found a synergetic effect between pollination and soil fertilization whereby increasing pollination intensity led to a far higher impact on sunflower yield when the soil had been fertilized. Specifically, the intensification of insect pollination increased seed yield by approximately 0.4 ton/ha on nutrient poor soil and by approximately 1.7 ton/ha on moderately fertilized soil. Our findings suggest that sunflower crops on adequate balanced soil fertility will receive abundant insect pollination and may gain more from both synergies than crops grown in areas with degraded soil fertility.


Sign in / Sign up

Export Citation Format

Share Document