scholarly journals A Review Paper on Stir Casting of Reinforced Aluminium Metal Matrix Composite (MMC)

Author(s):  
Gagandeep Singh ◽  
Ashwani Kumar

This paper deals about the importance of composites as engineering materials which is reflected by the fact that most of the materials which are available in the market are composites. These composites replaced cast iron and bronze alloys due to their poor wear and seizure resistance. Due to the wide choice of materials, today's engineers are posed with a big challenge for the right selection of a material and the right selection of a manufacturing process for an application. There are more than 50,000 materials available to engineers for the design and manufacturing of products for various applications. In the present study, based on literature review, the effect of Boron Carbide particle reinforcements are finding increased applications in aerospace, automobile, space, underwater and transportation applications. This is mainly due to improved mechanical and tribological properties like strong, stiff abrasion and impact resistant and it is not easily corroded. In a review of different researchers have been made to consolidate some of the aspects of mechanical and wear behaviour of Aluminium Metal Matrix Composites reinforced with Boron Carbide particles.

Author(s):  
Paramjit Singh

Abstract: Aluminum alloy’s widely employed in transportation applications like: aerospace, aviation, marine and automobile sector due to their good mechanical properties, wear properties, corrosion behavior and high strength to density ratio. The current review article mainly highlights the effects of various reinforcements on mechanical and tribological properties of aluminum based metal matrix composite materials and focuses on the types of different reinforcements. Review revealed that, there is significant improvement in mechanical properties of AMMC’s with different reinforcements as compared to traditional base alloys. The reinforcements may be SiC, TiO2 , Al2O3 , fly ash, B4C, fiber, Zircon are incorporated in the stir casting or other methods. Keywords: AMMC, Reinforcements, Mechanical properties, Stir casting etc.


2013 ◽  
Vol 22 (4) ◽  
pp. 096369351302200 ◽  
Author(s):  
S. Vijayakumar ◽  
L. Karunamoorthy

Aluminium metal matrix composites wear characterization is presented in the paper. The LM25 grade aluminium alloy is chosen as matrix material and reinforcements are silicon carbide, zircon and garnet particles. AlMMCs are produced by conventional stir casting method and heat treated before making wear test specimens according to the ASTM G99 standards. The wear behaviour of these composites is studied under laboratory conditions using a pin-on-disc wear test rig. The wear behaviour of these composites is studied under sliding on EN32 steel disc. The influence of reinforcement type, volume fraction, particle size, sliding speed, applied load and sliding distance is analyzed.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 349
Author(s):  
Dr K. Arumugam ◽  
V Sathiyamoorthy ◽  
J Jerome Kingston ◽  
K Akiraman ◽  
Senthilkumar V ◽  
...  

Hybrid Metal matrix composites are commonly used in Aerospace, Automobile industries because of its light weight, High tensile strength, high resistance to wear and improved specific strength. This is mainly due to improved mechanical and tribological properties like strength, stiffness, abrasion, impact resistance and wears resistance. In the present scenario, a lot of research activities were on automobile. This paper direct the researchers and engineer towards suitable selection of materials by its properties in the relevant area and various  techniques involved in fabrication of metal matrix composites, predominantly on the liquid state metal processing method. In this work Al6061, Boron carbide, mica and hybrid Aluminium metal matrix composites are fabricated using Stir casting Techniques with varying mass fraction of mica 3%, 4%, 5% incorporated into the alloy, Sustaining the mass fraction of boron carbide as  10% for all proportions. Mica and B4C ceramic particles were incorporated into Al 6061 alloy by stir-casting method. In Stir casting method of composite materials synthesis, a dispersed phase (ceramic particles, short fibers) is mixed with a molten metal matrix by means of mechanical stirring. The samples were studied using scanning electron microscope (SEM) one of the most useful instrument for future research to know its microstructure. This study emphasize on the dry siding wear behaviour of aluminium reinforced with 3%,4%,5% mica and constant quantity of 10% boron carbide hybrid composite using a pin on disc. Wear performance of the hybrid composites were evaluated over a different load ranges and at different sliding velocities.  


Author(s):  
Ankit Sharma ◽  
Amrita Priyadarshini ◽  
Ravindran Sujith ◽  
M. V. Sankara Subrahmanyam ◽  
P. Alen Thomas ◽  
...  

Abstract Aluminium metal matrix composites exhibiting superior mechanical and tribological properties have gained immense interest in recent years. These comosites are finding broad applications in the fields of automotive, aerospace, military and marine. Graphene Nanoplatelets (GNPs), as reinforcement in composites, have become a prime focus because of its exceptional characteristic properties. In the present study, GNPs are dispersed into the aluminium alloy as reinforcements by using stir casting method. To ensure proper dispersion, sintered pellets of aluminium mixed with GNPs are added to the molten metal. The dispersion of the GNPs and the microstructural changes due to the addition of GNPs are observed using Scanning Electron Microscopy (SEM) and elemental mapping. Vickers hardness tester is used to measure hardness of these samples. To compare the tribological properties of Al/GNP composite as well as pure alumimum samples, pin-on-disc experiments are conducted for a specific combination of sliding speed and sliding distance at different loading conditions. The weight loss, wear rate and coefficient of friction are measured and favourable effects of GNPs on tribological properties of Al/GNP composite are discussed. In addition, the wear mechanism has been understood in detail by conducting microstructural studies of the worn surfaces using SEM and Energy Dispersive Spectroscopy. It is observed that the Vickers hardness of the composite increased to a maximum of 25% while coefficient of friction decreased to a minimum of 26% for Al/GNP composite.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Arvind R S ◽  
Prasanna Ram M ◽  
Prashanth T ◽  
Jaimon Dennis Quadros

Cenosphere fly ash is one of the most inexpensive and low-density material which is abundantly available as a solid waste by-product of coal combustion in thermal power plants. Aluminium metal matrix composites with Nickel coated cenospheres as the reinforcement is prepared by stir casting route. The composites are prepared with varying percentages of cenospheres in the percentage of 2-10% by weight of the composite. Immersion corrosion tests are conducted on the composites in three different medium and for three different time durations. It is evident from the test results as well as the microstructure images that the weight loss of samples with 8% Nickel coated cenospheres has shown least corrosion or the highest corrosion resistance when compared to the counterparts.


2013 ◽  
Vol 845 ◽  
pp. 398-402 ◽  
Author(s):  
Chinnasamy Muthazhagan ◽  
A. Gnanavelbabu ◽  
G.B. Bhaskar ◽  
K. Rajkumar

This paper deals with the mechanical properties in conventional heat treatment of Al (6061)-B4C-Graphite. Aluminium Metal Matrix Composites (MMC) is fabricated through two step stir casting method. The composites were fabricated with various volume percentage levels as Aluminium reinforced with (5, 10 &15%) Boron Carbide and (5,10 & 15%) of Graphite. Fabricated composites were subjected to conventional heat treatment for enhancing the mechanical properties. Influences of Graphite reinforcement on mechanical properties of Aluminum-Boron carbide composites were analyzed. The microstructure studies were also carried out. It is observed that increasing the graphite content within the aluminum matrix results in significant decrease in ductility, hardness, ultimate tensile strength. The addition of boron carbide conversely increased the hardness of the composites.


Sign in / Sign up

Export Citation Format

Share Document