Flow Behaviors of Commercial Food Thickeners Used for the Management of Dysphagia: Effect of Temperature

Author(s):  
Se-Ra Hong ◽  
Dong-Soo Sun ◽  
Whachun Yoo ◽  
Byoungseung Yoo

Gum-based food thickeners are widely used to care for patients with dysphagia in Korea. In this study, the flow properties of commercially available gum-based food thickeners marketed in Korea were determined as a function of temperature. The flow properties of thickeners were determined based on the rheological parameters of the power law and Casson models. Changes in shear stress with the rate of shear (1-100 s-1) at different temperatures (5, 20, 35, and 50 oC) were independent of the type of thickener. All thickeners had high shear-thinning behavior (n=0.08-0.18) with yield stress at the different temperatures tested. In general, apparent viscosity (na,50) values progressively decreased with an increase in temperature. In addition, the consistency index (K) and Casson yield stress (σoc) values did not change much upon an increase in temperature from 5 to 35 oC, except for sample B. In the temperature range of 5-50 oC, the thickeners followed an Arrhenius temperature relationship with a high determination coefficient (R2=0.93-0.97): activation energies (Ea) for the flow of thickeners were in the range of 2.44 - 10.7 kJ/mol. Rheological parameters demonstrated considerable differences in flow behavior between the different gum-based food thickeners, indicating that their flow properties are related to the type of thickener and the flow properties of gum.

Author(s):  
Charles Windson Isidoro Haminiuk ◽  
Maria-Rita Sierakowski ◽  
Giselle Maria Maciel ◽  
José Raniere Mazile Bezerra Vidal ◽  
Ivanise Guilherme Branco ◽  
...  

Rheological parameters of Butia pulp were determined at different temperatures using a concentric cylinder Haake Rotovisco rheometer, model RV-20, with measurement system ZA-30. Butia pulp was found to exhibit non-Newtonian, pseudoplastic behavior at all temperatures and the rheological parameters were adequately described by the Herschel-Bulkley model. Yield stress, flow behavior index, and consistency coefficient were significantly affected by temperature. The yield stress decreased exponentially with process temperature and ranged between 36.60 and 21.70 Pa. Apparent viscosity calculated through the Herschel-Bulkley model decreased with an increase in temperature. The Arrhenius model gave a good description of temperature effect on apparent viscosity of the pulp.


Author(s):  
Zurriye Yilmaz ◽  
Mehmet Dogan ◽  
Mahir Alkan ◽  
Serap Dogan

In the food industry, rheological properties, such as viscosity, shear rate, and shear stress, are the most important parameters required in the design of a technological process. Therefore, in this study, we determined the flow behavior and the time-dependent flow properties of Turkish Delight (TD) in the temperature range of 25-75°C using a capillar rheometer. The structure and thermal properties of TD were investigated by XRD and a simultaneous DTA/TG analysis. The shear rate values ranged from 5 to 300s-1. We found that: (i) TD behaved as non- Newtonian pseudoplastic foodstuff; (ii) while the measurement temperature increased, viscosity decreased; and (iii) TD was a rheopectic material. The effect of temperature on viscosity was described by means of the Arrhenius equation. The activation energies for the flow of pseudoplastic TD varied from 50.1-74.2 kJ/mol, depending on shear rate. Three models were used to predict the flow behavior of TD, namely, the Power law, Bingham and Casson models. The Power law model adequately described well the flow behavior of TD at different temperatures.


2020 ◽  
Vol 10 (6) ◽  
pp. 7120-7134

The purpose of this study is to investigate the rheological properties of sumac extract in different concentrations at different temperatures as well as its flow behavior in sudden expansion-contraction and at 90o elbow with CFD. The rheological behaviour of sumac extract in different concentrations (45.65%, 50.44%, 55.53%, 60.32%, and 65.13% total solids) were evaluated using a rotational viscometer at different temperatures (10, 20, 30, 40 and 50 C). Sumac extract samples showed Newtonian flow properties in these temperature ranges. Arrhenius equation was used to determine the effect of temperature. Ea value varied in the range of 11.16-34.35 kJ/mol, which diminished with a decrease in concentration. Power and Exponential models were used to characterize the effect of concentration on flow behavior. Time average velocity vector and contours, vorticity contours, kinetic energy contours, and pressure contours are given to show the flow behavior of sumac extract.


Author(s):  
M. A. Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan

The temperature and concentration play an important role on rheological parameters of the gel. In this work, an experimental investigation of thermorheological properties of aqueous gel Carbopol Ultrez 20 for various concentrations and temperatures has been presented. Both controlled stress ramps and controlled stress oscillatory sweeps were performed for obtaining the rheological data to find out the effect of temperature and concentration. The hysteresis or thixotropic seemed to have negligible effect. Yield stress, consistency factor, and power law index were found to vary with temperature as well as concentration. With gel concentration, the elastic effect was found to increase whereas viscous dissipation effect was found to decrease. Further, the change in elastic properties was insignificant with temperature in higher frequency range of oscillatory stress sweeps.


Author(s):  
Dayane Izidoro ◽  
Maria-Rita Sierakowski ◽  
Nina Waszczynskyj ◽  
Charles W. I. Haminiuk ◽  
Agnes de Paula Scheer

The effects of ingredients on the sensory evaluation and rheological behavior of two brands of mayonnaise were examined in this work. Mayonnaise samples were examined by Analytical Descriptive Test and Ranking Test of Preference. The rheological parameters were determined at 25°C using a concentric cylinder Brookfield rheometer with a spindle SC4-34. The results showed that standard mayonnaise as opposed to low-fat mayonnaise gained higher grades for most sensory attributes. All samples were found to exhibit non-Newtonian pseudoplastic behavior described by Herschel–Bulkley model. A decrease in the yield stress, viscosity and shear stress with the decrease in oil content was observed in all products, which confirm that the rheological characterization is capable of distinguishing rather well between mayonnaises made with different formulation.


1962 ◽  
Vol 2 (03) ◽  
pp. 211-215 ◽  
Author(s):  
J.G. Savins ◽  
G.C. Wallick ◽  
W.R. Foster

Abstract A comprehensive review of the salient features of the differentiation method of rheological analysis in Poiseuille flow from its inception circa 1928 is presented. Here no initial assumptions regarding the nature of the function relating rheological parameters to observed kinematical and dynamical parameters are required in the data-analysis process. In contrast, the integration method involves interpreting flow properties in terms of a particular ideal model. It is shown that, although both methods represent modes of solution of the same integral equation, being relatively bias-free, the differentiation method offers a more discriminating procedure for rheological analysis. The application to problems involving plane Poiseuille flow is also described. Introduction In most instances, the approach to the problem of interpreting the rheological properties of various compositions as they ate affected by changes in chemical or physical environment, as saying the characteristics of a particular constituent of a suspension, analyzing flow behavior in terms of interactions between components in a system, to cite but a few examples, has been in terms of what Hersey terms the integration method. Briefly, it consists of interpreting flow properties in terms of a particular ideal model. The usual practice of the integration method is to choose a model with a minimum number of parameters because, other things being equal, it is desirable to use the simplest model which will describe the behavior of a real material and yet be mathematically tract able for the requirements of data analysis. This expression is then substituted into an equation which relates observed kinematical and dynamical quantities, such as volume flux Q and pressure gradient J, and angular velocity and torque T, in a capillary and concentric cylinder apparatus, respectively. The rheological parameters appear on integrating, in an expression relating the pairs of observable quantities such as those just given. In many instances a particular model provides a good representation of rheological behavior over a reasonable range of compositional and environmental changes. just as often, however, it is obvious that the interpretation of rheological changes by the integration method is not providing realistic information about changes in flow behavior. A more general method of interpreting rheological data for a given material is to make no initial assumptions regarding the nature of the function relating rheological parameters to observed kinematical and dynamical quantities, e.g., flow rate and pressure drop in capillary flow or angular velocity and torque in a rotational viscometer. This general method Hersey terms the differentiation method. Instead of integrating, one differentiates the integral equation with respect to one of the limits, i.e., one of the boundary conditions; the resulting expression contains the same observable quantities just given, their derivatives, and the rheological function evaluated at that boundary. By obtaining these derivatives from experimental ‘data, graphically or by a computer routine, they can be substituted into the differential equation and a graphical form of the function derived. THEORY OF THE DIFFERENTIATION METHOD FOR POISEUILLE-TYPE FLOWS In this introductory paper, two flow cases which are important in viscometry are considered (one for the first time) from the differentiation method of analysis, flow in a cylindrical tube and flow between fixed parallel surfaces of infinite extent, the basic integral equations being formulated in a manner analogous to the way they originally appeared in the literature. In addition, the following ideal conditions will be assumed:an absence of anomalous wall effects,isotropic behavior everywhere, andsteady laminar flow conditions. SPEJ P. 211^


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1065-1070 ◽  
Author(s):  
KUNQUAN LU ◽  
RONG SHEN ◽  
XUEZHAO WANG ◽  
GANG SUN ◽  
WEIJIA WEN

A series of high performance ER fluids newly manufactured in our laboratory are presented. The yield stress of those ER fluids can reach several tens of kPa, 100 kPa and even 200 kPa, respectively. For understanding the high shear stress effect a model is proposed base on the electric field induced molecular bounding effect. The main effective factors in fabricating the high performance ER are discussed.


2014 ◽  
Vol 44 (2) ◽  
pp. 168-178 ◽  
Author(s):  
Ali Mohamadi Sani ◽  
Ghazaleh Hedayati ◽  
Akram Arianfar

Purpose – The aim of this study was to measure the apparent viscosity, flow behavior and density of melon juice as a function of temperature and juice concentration and to obtain simple equations to correlate experimental data. Design/methodology/approach – Melon juice was concentrated in a rotary evaporator to 40±1, 52.5±1 and 65±1°Brix at 50°C, 80 rpm and stored at 4°C until analysis. Density of melon juice was determined with 25 ml pycnometer at 15, 25 and 35°C and was expressed as kg/m3. All experiments were conducted in triplicate. Experimental data were fitted to different models (linear, quadratic, exponential, quadratic exponential and polynomial) using Minitab 16. Significant differences in the mean values were reported at p<0.05. The flow behavior of melon juice was determined using a concentric cylinder rotational viscometer at shear rate range of 13.2-330 s−1 and temperatures of 15, 25 and 35°C. The experimental data were analyzed Slide Write V7.01 Trial Size (p<0.05) and the rheograms was plotted by Microsoft Excel 2007. Findings – Results showed that the four-term polynomial model is the best model for computing density values from temperature and concentration (R2=0.999). The measured shear stress was within 1.69-780 Pa, corresponding to viscosity range of 0.016-0.237 Pa · s. Within the tested conditions, the concentrate exhibited a pseudo plastic behavior. Temperature had an inverse effect on shear stress and apparent viscosity. Originality/value – No research had been done on production of melon juice concentrate.


2022 ◽  
Vol 1048 ◽  
pp. 366-375
Author(s):  
Pavan Chandrasekar ◽  
Anjala Nourin ◽  
Addepalli Sri Naga Bhushana Aravind Gupta ◽  
Bavineni Venkata Jyoshna ◽  
Dhanya Sathyan

Abstract: Rheology is the science that concerns the flow of liquids, and the distortion of solids under an applied force. The study of the rheology of concrete determines the properties of fresh concrete. The rheological parameters are affected by temperature, stress conditions and several other factors. The main intention of this research is to model the rheological parameters of the fly ash incorporated cement with various types of superplasticizers exposed under different temperatures using an Artificial Neural Network. Test data were generated by performing rheological tests on cement paste at three distinct temperatures (15, 27, 35°C). Mixes were prepared using OPC, fly ash (15, 25, 35%) and superplasticizers of four different families. By conducting experiments, 252 data have been generated by modifying the combination of fly-ash, superplasticizer, and test temperature. Among the 252 data, 80% has been utilized for training and 20% is utilized for predicting the model’s accuracy. The input layer of the model consists of test temperature, the amount of fly ash replaced, cement and water content, and four different groups of superplasticizers. The cement paste’s yield stress was the output parameter of the model. The model generated data has been compared with the experimentally generated data to determine the accuracy of the model.Keywords: Rheology, Fly Ash, Superplasticizer, Temperature, ANN


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Luigi Scatteia ◽  
Paola Scarfato ◽  
Domenico Acierno

AbstractIn this study the melt flow behavior of poly(butylene terephthalate)-clay nanocomposites produced by melt compounding was investigated. Four commercial organo-modified montmorillonites, differing mainly by the organic treatment used in the modification, were employed as nanometric fillers and blended with the poly(butylene terephthalate) (PBT) at two weight percentages each (6 and 9wt%). The process was carried out using a laboratory-scale twin-screw extruder at two different extrusion rates, in order to evaluate the effect of the shear rate during the process on microstructure and flow properties. In this regard, the nanocomposite samples were submitted to morphological analyses and rheological measurements in the dynamic regime. The effect of temperature on the flow behavior of the hybrids with respect to the neat PBT matrix was also investigated. The obtained data were related to the hybrid compositions and then to the chemical affinity between polymer and clay type. All the reported results have shown a gradual transition from a pseudo-Newtonian trend towards a pseudo-solid-like flow behavior with the increase of the clay loading and the dispersion/exfoliation level of the clay particles, due to the corresponding increase of the polymer-silicate interactions that slow the relaxation times of the PBT chains. Moreover, it was also evident that for the fillers having the higher affinity towards the PBT the nano-scale dispersion benefit from higher residence times, and therefore slower extrusion rates; on the contrary, for the fillers having poor interaction with the polymer, higher shear stress, and therefore higher extrusion rates, are needed to disrupt the clay tactoids in smaller particles. In the last part of the work, in order to verify if a relationship between flow properties and degree of exfoliation does actually exist, the rheological data were also processed using a simple semi-quantitative empirical method proposed in literature. The method failed for our systems, thus underlining the insufficiency of the rheological response alone in quantifying the exfoliation degree of an organoclay in the matrix.


Sign in / Sign up

Export Citation Format

Share Document