19 Adaptive Boosting

Keyword(s):  
Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 356
Author(s):  
Shubham Mahajan ◽  
Akshay Raina ◽  
Xiao-Zhi Gao ◽  
Amit Kant Pandit

Plant species recognition from visual data has always been a challenging task for Artificial Intelligence (AI) researchers, due to a number of complications in the task, such as the enormous data to be processed due to vast number of floral species. There are many sources from a plant that can be used as feature aspects for an AI-based model, but features related to parts like leaves are considered as more significant for the task, primarily due to easy accessibility, than other parts like flowers, stems, etc. With this notion, we propose a plant species recognition model based on morphological features extracted from corresponding leaves’ images using the support vector machine (SVM) with adaptive boosting technique. This proposed framework includes the pre-processing, extraction of features and classification into one of the species. Various morphological features like centroid, major axis length, minor axis length, solidity, perimeter, and orientation are extracted from the digital images of various categories of leaves. In addition to this, transfer learning, as suggested by some previous studies, has also been used in the feature extraction process. Various classifiers like the kNN, decision trees, and multilayer perceptron (with and without AdaBoost) are employed on the opensource dataset, FLAVIA, to certify our study in its robustness, in contrast to other classifier frameworks. With this, our study also signifies the additional advantage of 10-fold cross validation over other dataset partitioning strategies, thereby achieving a precision rate of 95.85%.


Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


2020 ◽  
Vol 10 (24) ◽  
pp. 9151
Author(s):  
Yun-Chia Liang ◽  
Yona Maimury ◽  
Angela Hsiang-Ling Chen ◽  
Josue Rodolfo Cuevas Juarez

Air, an essential natural resource, has been compromised in terms of quality by economic activities. Considerable research has been devoted to predicting instances of poor air quality, but most studies are limited by insufficient longitudinal data, making it difficult to account for seasonal and other factors. Several prediction models have been developed using an 11-year dataset collected by Taiwan’s Environmental Protection Administration (EPA). Machine learning methods, including adaptive boosting (AdaBoost), artificial neural network (ANN), random forest, stacking ensemble, and support vector machine (SVM), produce promising results for air quality index (AQI) level predictions. A series of experiments, using datasets for three different regions to obtain the best prediction performance from the stacking ensemble, AdaBoost, and random forest, found the stacking ensemble delivers consistently superior performance for R2 and RMSE, while AdaBoost provides best results for MAE.


2021 ◽  
pp. 1-7
Author(s):  
Pattharawin Pattharanitima ◽  
Akhil Vaid ◽  
Suraj K. Jaladanki ◽  
Ishan Paranjpe ◽  
Ross O’Hagan ◽  
...  

Background/Aims: Acute kidney injury (AKI) in critically ill patients is common, and continuous renal replacement therapy (CRRT) is a preferred mode of renal replacement therapy (RRT) in hemodynamically unstable patients. Prediction of clinical outcomes in patients on CRRT is challenging. We utilized several approaches to predict RRT-free survival (RRTFS) in critically ill patients with AKI requiring CRRT. Methods: We used the Medical Information Mart for Intensive Care (MIMIC-III) database to identify patients ≥18 years old with AKI on CRRT, after excluding patients who had ESRD on chronic dialysis, and kidney transplantation. We defined RRTFS as patients who were discharged alive and did not require RRT ≥7 days prior to hospital discharge. We utilized all available biomedical data up to CRRT initiation. We evaluated 7 approaches, including logistic regression (LR), random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), and MLP with long short-term memory (MLP + LSTM). We evaluated model performance by using area under the receiver operating characteristic (AUROC) curves. Results: Out of 684 patients with AKI on CRRT, 205 (30%) patients had RRTFS. The median age of patients was 63 years and their median Simplified Acute Physiology Score (SAPS) II was 67 (interquartile range 52–84). The MLP + LSTM showed the highest AUROC (95% CI) of 0.70 (0.67–0.73), followed by MLP 0.59 (0.54–0.64), LR 0.57 (0.52–0.62), SVM 0.51 (0.46–0.56), AdaBoost 0.51 (0.46–0.55), RF 0.44 (0.39–0.48), and XGBoost 0.43 (CI 0.38–0.47). Conclusions: A MLP + LSTM model outperformed other approaches for predicting RRTFS. Performance could be further improved by incorporating other data types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamidreza Taleghamar ◽  
Hadi Moghadas-Dastjerdi ◽  
Gregory J. Czarnota ◽  
Ali Sadeghi-Naini

AbstractThe efficacy of quantitative ultrasound (QUS) multi-parametric imaging in conjunction with unsupervised classification algorithms was investigated for the first time in characterizing intra-tumor regions to predict breast tumor response to chemotherapy before the start of treatment. QUS multi-parametric images of breast tumors were generated using the ultrasound radiofrequency data acquired from 181 patients diagnosed with locally advanced breast cancer and planned for neo-adjuvant chemotherapy followed by surgery. A hidden Markov random field (HMRF) expectation maximization (EM) algorithm was applied to identify distinct intra-tumor regions on QUS multi-parametric images. Several features were extracted from the segmented intra-tumor regions and tumor margin on different parametric images. A multi-step feature selection procedure was applied to construct a QUS biomarker consisting of four features for response prediction. Evaluation results on an independent test set indicated that the developed biomarker coupled with a decision tree model with adaptive boosting (AdaBoost) as the classifier could predict the treatment response of patient at pre-treatment with an accuracy of 85.4% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.89. In comparison, the biomarkers consisted of the features derived from the entire tumor core (without consideration of the intra-tumor regions), and the entire tumor core and the tumor margin could predict the treatment response of patients with an accuracy of 74.5% and 76.4%, and an AUC of 0.79 and 0.76, respectively. Standard clinical features could predict the therapy response with an accuracy of 69.1% and an AUC of 0.6. Long-term survival analyses indicated that the patients predicted by the developed model as responders had a significantly better survival compared to the non-responders. Similar findings were observed for the two response cohorts identified at post-treatment based on standard clinical and pathological criteria. The results obtained in this study demonstrated the potential of QUS multi-parametric imaging integrated with unsupervised learning methods in identifying distinct intra-tumor regions in breast cancer to characterize its responsiveness to chemotherapy prior to the start of treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii203-ii203
Author(s):  
Alexander Hulsbergen ◽  
Yu Tung Lo ◽  
Vasileios Kavouridis ◽  
John Phillips ◽  
Timothy Smith ◽  
...  

Abstract INTRODUCTION Survival prediction in brain metastases (BMs) remains challenging. Current prognostic models have been created and validated almost completely with data from patients receiving radiotherapy only, leaving uncertainty about surgical patients. Therefore, the aim of this study was to build and validate a model predicting 6-month survival after BM resection using different machine learning (ML) algorithms. METHODS An institutional database of 1062 patients who underwent resection for BM was split into a 80:20 training and testing set. Seven different ML algorithms were trained and assessed for performance. Moreover, an ensemble model was created incorporating random forest, adaptive boosting, gradient boosting, and logistic regression algorithms. Five-fold cross validation was used for hyperparameter tuning. Model performance was assessed using area under the receiver-operating curve (AUC) and calibration and was compared against the diagnosis-specific graded prognostic assessment (ds-GPA); the most established prognostic model in BMs. RESULTS The ensemble model showed superior performance with an AUC of 0.81 in the hold-out test set, a calibration slope of 1.14, and a calibration intercept of -0.08, outperforming the ds-GPA (AUC 0.68). Patients were stratified into high-, medium- and low-risk groups for death at 6 months; these strata strongly predicted both 6-months and longitudinal overall survival (p < 0.001). CONCLUSIONS We developed and internally validated an ensemble ML model that accurately predicts 6-month survival after neurosurgical resection for BM, outperforms the most established model in the literature, and allows for meaningful risk stratification. Future efforts should focus on external validation of our model.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 450
Author(s):  
Zara Moleinia ◽  
David Bahr

The current work centers on multi-scale approaches to simulate and predict metallic nano-layers’ thermomechanical responses in crystal plasticity large deformation finite element platforms. The study is divided into two major scales: nano- and homogenized levels where Cu/Nb nano-layers are designated as case studies. At the nano-scale, a size-dependent constitutive model based on entropic kinetics is developed. A deep-learning adaptive boosting technique named single layer calibration is established to acquire associated constitutive parameters through a single process applicable to a broad range of setups entirely different from those of the calibration. The model is validated through experimental data with solid agreement followed by the behavioral predictions of multiple cases regarding size, loading pattern, layer type, and geometrical combination effects for which the performances are discussed. At the homogenized scale, founded on statistical analyses of microcanonical ensembles, a homogenized crystal plasticity-based constitutive model is developed with the aim of expediting while retaining the accuracy of computational processes. Accordingly, effective constitutive functionals are realized where the associated constants are obtained via metaheuristic genetic algorithms. The model is favorably verified with nano-scale data while accelerating the computational processes by several orders of magnitude. Ultimately, a temperature-dependent homogenized constitutive model is developed where the effective constitutive functionals along with the associated constants are determined. The model is validated by experimental data with which multiple demonstrations of temperature effects are assessed and analyzed.


Sign in / Sign up

Export Citation Format

Share Document