HIGH-RESOLUTION MCG WITH DC-THIN FILM SQUID'S

Keyword(s):  
Author(s):  
Paul G. Kotula ◽  
C. Barry Carter

Thin-film reactions in ceramic systems are of increasing importance as materials such as oxide superconductors and ferroelectrics are applied in thin-film form. In fact, reactions have been found to occur during the growth of YBa2Cu3O6+x on ZrO2. Additionally, thin-film reactions have also been intentionally initiated for the production of buffer layers for the subsequent growth of high-Tc superconductor thin films. The problem is that the kinetics of ceramic thin-film reactions are not well understood when the reaction layer is very thin; that is, when the rate-limiting step is a phase-boundary reaction as opposed to diffusion of the reactants through the product layer. In this case, the reaction layer is likely to be laterally non-uniform. In the present study, the measurement of thin reaction-product layers is accomplished by first digitally acquiring backscattered-electron images in a high-resolution field-emission scanning electron microscope (FESEM) followed by image analysis. Furthermore, the problem of measuring such small thicknesses (e.g., 20-500nm) over lengths of interfaces longer than 3mm is addressed.


Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


1997 ◽  
Vol 503 ◽  
Author(s):  
Yongxia Zhang ◽  
Yanwei Zhang ◽  
Juliana Blaser ◽  
T. S. Sriiram ◽  
R. B. Marcus

ABSTRACTA thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an Atomic Force Microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. The thermal response over the range 25–s 4.5–rovolts per degree C and is linear.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yuhao Zhou ◽  
Bowen Ji ◽  
Minghao Wang ◽  
Kai Zhang ◽  
Shuaiqi Huangfu ◽  
...  

Remarkable progress has been made in the high resolution, biocompatibility, durability and stretchability for the implantable brain-computer interface (BCI) in the last decades. Due to the inevitable damage of brain tissue caused by traditional rigid devices, the thin film devices are developing rapidly and attracting considerable attention, with continuous progress in flexible materials and non-silicon micro/nano fabrication methods. Therefore, it is necessary to systematically summarize the recent development of implantable thin film devices for acquiring brain information. This brief review subdivides the flexible thin film devices into the following four categories: planar, open-mesh, probe, and micro-wire layouts. In addition, an overview of the fabrication approaches is also presented. Traditional lithography and state-of-the-art processing methods are discussed for the key issue of high-resolution. Special substrates and interconnects are also highlighted with varied materials and fabrication routines. In conclusion, a discussion of the remaining obstacles and directions for future research is provided.


2018 ◽  
Vol 10 (18) ◽  
pp. 15847-15854 ◽  
Author(s):  
Qing Zhang ◽  
Shuangshuang Shao ◽  
Zheng Chen ◽  
Vincenzo Pecunia ◽  
Kai Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document