scholarly journals Resistance to Abrasive Wear and Volume Fraction of Carbides in Cast High-manganese Austenitic Steel with Composite Structure

2015 ◽  
Vol 15 (4) ◽  
pp. 129-133 ◽  
Author(s):  
G. Tęcza ◽  
J. Głownia

Abstract Cast Hadfield steel is characterised by high abrasion resistance, provided, however, that it is exposed to the effect of dynamic loads. During abrasion without loading, e.g. under the impact of loose sand jet, its wear resistance drops very drastically. To increase the abrasion resistance of this alloy under the conditions where no pressure is acting, primary vanadium carbides are formed in the metallurgical process, to obtain a composite structure after the melt solidification. The primary, very hard, carbides uniformly distributed in the austenitic matrix are reported to double the wear resistance of samples subjected to the effect of a silicon carbide-water mixture.

2020 ◽  
pp. 306-308
Author(s):  
V.S. Bochkov

The relevance of the search for solutions to increase the wear resistance of bucket teeth of excavating machine type front shovel is analyzed. The reasons for the wear of the teeth are considered. It is determined that when excavating machines work for rocks of VIII and IX categories, impact-abrasive wear of the inner side of the teeth and abrasive external wear occurs. It is proved that the cold-work hardening of Hadfield steel (the teeth material), which occurs during the excavating machine teeth work in the rocks of VIII and IX categories, reduces the impact-abrasive wear rate on the inner side of the teeth and does not affect the abrasive wear of the outer. The methods for thermomechanical treatment of the outer side of the excavating machine tooth is proposed. It can increase the wear resistance of Hadfield steel (110G13L) up to 1.7 times and lead to the self-sharpening effect of the tooth due to equalization of the wear rate of the outer and inner parts of the tooth. The efficiency factor of thermomechanical treatment to reduce the of abrasive wear rate of Hadfield steel is experimentally proved.


Author(s):  
Aboulghit El Malki Alaoui

Experimental impact tests were performed using a shock machine and aerated water by means of an air-bubble generator. High speed shock test machine allows carrying out tests of impact on water (slamming). This machine permits to stabilise velocity with a maximal error equal to 10% during slamming tests. The air volume fraction in the bubble was measured by optical probe technique. The present work is aimed at quantifying the effects of the aeration on the hydrodynamic loads and pressures during the entry of a rigid body at constant speed in an air-water mixture. The impact tests were conducted with a rigid pyramid for an impact velocity equal to 15 m.s−1 and for two average void fractions, 0,46% and 0,84%. The reduction of the impact force and pressure due to aeration has been confirmed by these experiments.


2007 ◽  
Vol 336-338 ◽  
pp. 1442-1444
Author(s):  
Xiao Le Cheng ◽  
Yi Min Gao ◽  
Jian Dong Xing ◽  
Min Tan ◽  
Guo Shang Zhang ◽  
...  

The TiC particles are selected as reinforced phase and the Hadfield steel as matrix. The powder metallurgy liquid phase sintering technique is adopted to fabricate TiC particles reinforced Hadfield steel matrix composites. The effects of elements Mo and Ni on the performance of the composites were studied. The impact wear tester is adopted to investigate the wear-resistant property of the composites under the different impact loads. Adding Mo can improve the interfacial bonding between the Hadfield steel and TiC, and the best adding ratio between Mo and TiC is 1:3.68. Adding 2%(vol.%)Ni can significantly improve the density and hardness of the composites. The experiment results of impact wear tests show that under the condition of low and middling loads, the composites display the best wear-resistant properties, moreover, the more TiC content is, the better wear-resistance property is. Under 2.0J impact energy, the wear resistance of the composite containing 40%(vol.%) TiC is 1.3 times of Hadfield steel.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1818
Author(s):  
Zhang Pan ◽  
Xuanpu Dong ◽  
Huatang Cao ◽  
Qiwen Huang

To investigate the role of different distribution forms of Fe–Cr–C cladding layer in the impact abrasive wear performance of Hadfield steel, the over-lapped Fe–Cr–C cladding layer and dot-shaped Fe–Cr–C cladding layer were deposited, respectively, by plasma transferred arc (PTA) cladding on Hadfield steel. The microstructure, microhardness and impact abrasive wear performance of the two cladding layers under the impact of glass sand, granite and quartz sand were investigated. The results showed that both microstructures of the cladding layers were hypoeutectic Fe–Cr–C microstructures. The average microhardness of the over-lapped cladding layer and dot-shaped cladding layer was around 560 HV0.2 and 750 HV0.2, respectively. The over-lapped Fe–Cr–C cladding layer could only improve the impact abrasive wear resistance of the Hadfield steel under the wear condition of the glass sand. Meanwhile, the dot-shaped Fe–Cr–C cladding layer could improve the impact abrasive wear resistance of the Hadfield steel under all the three kinds of the abrasives because of the overall strengthening effect of its convex shape and the hypoeutectic FeCrC microstructure.


Author(s):  
Ahmad Al-Maharma ◽  
Naser Al-Huniti

In this research, the effect of nanosized air bubbles embedded within carbon nanotubes (CNTs) coated by various thicknesses of alumina (Al2O3) reinforced epoxy resin based composite on the natural frequencies of a multi-cracked bar is investigated in details. The impact of cracks’ locations and depths within the hybrid composite structure on the natural frequency profiles is investigated. The volume fraction of CNTs is fixed to 0.5 wt. % due to the significant improvements reported in the literature when the composite is reinforced with this volume fraction of CNTs. The results of the multi-scale finite element analysis are verified by comparing with previous studies and a good agreement is shown relating to the longitudinal natural frequencies. The results of the research show that the dynamic response of cracked bar is highly sensitive to the volume fractions of nanosized air bubbles located within the composite. The results of the study supported the hypothesis that the nanosized air bubbles can be used to reduce the weight of heavy composite structures along with using of suitable coatings to improve the mechanical properties of the hybrid composite. Furthermore. The results of the study can be employed to detect multiple cracks located within similar structures like wind turbine blade (WTB) fabricated from a hybrid composite structure composed of carbon fiber reinforced modified epoxy resin which contains nanosized air bubbles and CNTs nanofillers coated by Al2O3 at different thicknesses.


2010 ◽  
Vol 457 ◽  
pp. 249-254 ◽  
Author(s):  
Naoji Yoneta ◽  
Kazumichi Shimizu ◽  
Hiroya Hara ◽  
Masahito Tanaka ◽  
Yoshihiro Nawa

Spheroidal carbides cast irons (SCIs) are used in severe conditions where often occur erosion and due to their excellent wear resistance characteristics. In this study, three kinds of SCIs with a variation in matrices are tested and evaluated as shredding blade of uniaxial rotary glass shredder in recycling factories where often occurs extreme abrasion with the crushed glass. They are SCI-VCrNi, SCI-VMn, and SCI-Vw with hard (2400Hv) spheroidal vanadium carbides (VC). As a result, SCI-Vw reveals excellent wear resistance, approximately 1/12 of wear removal in weight, compare to other two materials of SCI-VCrNi and SCI-VMn. Spheroidal carbides nodularity(70%) and volume fraction of VCs(approximately 20%) are similar in three kinds of SCIs. The hardness of matrix of SCI-Vw (800Hv) is greater than that of SCI-VCrNi (320Hv) and SCI-VMn (380Hv). Therefore the experimental results are interpreted that hardness of matrix are dominant factor for abrasion. Based on this experimental study, SCI-Vw is an effective material for abrasion occurred on the blade of the glass shredder.


2011 ◽  
Vol 146 ◽  
pp. 112-123 ◽  
Author(s):  
R. Harzallah ◽  
A. Mouftiez ◽  
S. Hariri ◽  
E. Felder ◽  
J.P. Maujean

Railway networks are subjected to more and more severe loading conditions requiring the use of steels with a high resistance to wear and good fatigue behaviour. The surveys carried out on out of use equipment, such as rails or switches, show that these equipments fail by wear after quite a long period of use, but they can fail by fatigue in a substantially shorter time. In service, crossings are submitted to rolling, impact and sliding stresses. The impact-sliding is the result of the wheel transition from rail wing to crossing nose. Very high contact forces act on the crossing nose while such wheels are passing over it. These large contact forces between wheel and crossing can cause severe damage at crossing nose and wing rail. The influence of contact parameters on the damage of the crossing alloy (Hadfield steel GX120Mn13) in comparison with rail steel (R260) was investigated by impact and impact-sliding tests. The results are described and discussed using weight loss and microhardness measurements, optical and scanning electron microscopy observations of the contact surface. Examination of the results shows large plastic deformation in surface and subsurface of samples. In comparison with impact tests, sliding produces a change in size and shape of the contact area, a higher weight loss and lower hardening. A better impact–sliding wear resistance of Hadfield steel has been confirmed.


2013 ◽  
Vol 58 (3) ◽  
pp. 803-808 ◽  
Author(s):  
J. Głownia ◽  
G. Tęcza ◽  
M. Asłanowicz ◽  
A. Osciłowski

Abstract Hardness, microstructure and abrasive wear resistance of cast high-manganese steel (cast Hadfield steel) were compared with the cast steel of the same austenitic matrix but having vanadium carbides uniformly distributed within its entire volume. The chemical composition of the cast steel was chosen in such a way as to produce a composite structure after the alloy solidification. A similar hardness of the matrix was obtained with carbides evenly distributed in it, while abrasive wear resistance doubled its value. Using the investment casting process, working elements of teeth for the excavators and mechanical coal miners were cast.


2017 ◽  
Vol 732 ◽  
pp. 59-68 ◽  
Author(s):  
Zhi Fu Huang ◽  
Jian Dong Xing ◽  
Sheng Qiang Ma ◽  
Yi Min Gao ◽  
Ming Zheng ◽  
...  

The microstructure, toughness, hardness and wear resistance of Fe-B-C cast wear-resistant alloy were studied. The results indicate that, the as-cast Fe-B-C alloy comprises pearlite, ferrite and eutectic phase Fe2 (B, C), and that, with increasing boron and carbon contents, the boride volume fraction (BVF) and macrohardness increase; furthermore, when boron content increases from about 0.5 wt.% to 2.0 wt.%, the increase trend of the macrohardness will become smaller with increasing the carbon content. The results also indicate that, after heat-treatment, the Fe2 (B, C) becomes coarser than that as cast condition, and the boron content has less effect on the martensite hardness at the same carbon content; with increasing boron and carbon contents, the hardness of the samples increases and inversely the toughness decreases. At a lower BVF, the matrix plays a dominant role on the impact toughness of Fe-B-C alloy; however, at a higher BVF, the BVF plays a dominant role. The wear test results indicate that, with increasing the boron and carbon contents, the weight loss of the samples decreases, namely, the increase of wear resistance.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Sign in / Sign up

Export Citation Format

Share Document