scholarly journals Defects Appearing in the Surfacing Layers of Abrasion Resistant

2016 ◽  
Vol 16 (4) ◽  
pp. 23-28 ◽  
Author(s):  
R. Bęczkowski ◽  
M. Gucwa

Abstract The surfacing technologies are used for constitution of protection layer against wear and is destined for obtaining coating with high hardness. Among many weldings methods currently used to obtain the hard surface layer one of the most effective way of hardfacing is using flux cored arc welding. This additional material gives more possibilities to make expected hard surface layer. Chemical composition, property and economic factors obtained in flux cored wire are much richer in comparison to these obtained with other additional materials. This is the reason why flux cored wires give possibilities of application this kind of material for improving surface in different sectors of industry. In the present paper the imperfection in the layers was used for hardfacing process in different situations to show the possible application in the surface layer. The work presents studies of imperfection of the welds, contains the picture of microstructures, macrostructures and shows the results of checking by visual and penetrant testing methods.

2016 ◽  
Vol 16 (3) ◽  
pp. 39-42 ◽  
Author(s):  
M. Gucwa ◽  
J. Winczek ◽  
R. Bęczkowski ◽  
M. Dośpiał

Abstract The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical microscopy and X-ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of investigated coatings.


2019 ◽  
Vol 945 ◽  
pp. 706-711
Author(s):  
A.K. Kychkin ◽  
G.G. Vinokurov ◽  
N.F. Struchkov

Multiple use of pan concentrate from placer deposits directly in technical process without prealltoment of pure components could become one of promising directions in the field of receiving wide range of multicomponent metal and ceramic powdered materials. In this paper as the object of comparative examination, we present the hemimethylated plating made of exploited experimentative flux cored wires based on industrial Ni-Cr-B-Si system powder modified with rare-earth elements of concentrated complex from Tomtor mineral assets Republic of Sakha (Yakutia). The structure of received plating is heterogeneous and has oxidation coating as boundaries. According to the data of the phase shift analysis plating predominantly consist of Fe-Ni austenitic alloy phases with the Cr, Si carbide and Cr boride precipitation strengthening, plating generally consist of Al2O3, Cr2O3 и Fe2O3 oxide. The research of the plating ultimate composition testifies the equable allocation of main and alloying elements, local location of some elements in the structure of the plating. Microhardness of flux cored wire plating substantially depends on composition and fabricated structure. It has been established that the introduction of rare earth elements provided the formation of strengthening phase with the high hardness of plating resulting in wear resistance increase.


2017 ◽  
Vol 17 (2) ◽  
pp. 5-8 ◽  
Author(s):  
R. Bęczkowski

Abstract The rebuilding technologies are used to develop surface of ladle. Among many welding methods currently used to obtain surface layer without defects one of the most effective way of rebuilding is using metal arc welding. This additional material gives more possibilities to make expected quality of rebuild surface. Chemical composition, property and economic factors allow to use metal wire. Because of these reasons, solid wire gives opportunity to be wildly used as material to rebuild or repair the surface in different sectors of industry. The paper shows a few ways to rebuild the surface in the massive cast with the use of metal active gas welding for repair. The work presents studies of defect in the massive cast. It contains the pictures of microstructures and defects. The method of removing defects and the results of checking by visual and penetrant testing methods are shown. The paper describes the methodology of repair the ladle with metal active gas welding, preheating process and standards nondestructive testing method.


2014 ◽  
Vol 216 ◽  
pp. 151-156 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Vodǎ ◽  
Gheorghe Drăgănescu

The aim of this work was to determine by vibration tests the longitudinal elastic modulus and shear modulus of welded joints by flux cored arc welding. These two material properties are characteristic elastic constants of tensile stress respectively torsion stress and can be determined by several non-destructive methods. One of the latest non-destructive experimental techniques in this field is based on the analysis of the vibratory signal response from the welded sample. An algorithm based on Pronys series method is used for processing the acquired signal due to sample response of free vibrations. By the means of Finite Element Method (FEM), the natural frequencies and modes shapes of the same specimen of carbon steel were determined. These results help to interpret experimental measurements and the vibration modes identification, and Youngs modulus and shear modulus determination.


2021 ◽  
Vol 316 ◽  
pp. 794-802
Author(s):  
Andrey E. Balanovsky ◽  
Van Trieu Nguyen

The Purpose of paper is to conduct studies to assess the possibility of increasing the hardness of the surface layer of steel St3 grade by plasma heating of the applied surface coating containing powder alloy PR-N80X13S2R. Mixtures of pasta were divided into 2 groups: for furnace chemical-thermal treatment and plasma surface melting. The study of the microstructure showed a difference in the depth of the saturated layer, depending on the processing method, during chemical-thermal treatment-1 mm, plasma fusion - 2 mm. The results of measuring the surface micro-hardness showed that, the obtained coating from a mixture of PR-N80X13S2R + Cr2O3 + NH4Cl has a uniform high surface hardness (31-64 HRC), from a mixture of only PR-N80X13S2R - the surface hardness varies in a wide range (15-60 HRC). The study of the microhardness of the cross section of the surface layer showed that, the diffusion region: from a mixture of powder PR-N80X13S2R + Cr2O3 + NH4Cl has uniform hardness (450-490 HV); from a mixture of PR-N80X13S2R - hardness increases in the depth of the molten region (from 300 to 600 HV), and sharply decreases in the heat affected zone (210-170 HV). The use of PR-N80X13S2R alloy powder as the main component in the composition of the paste deposited on the St3 surface during plasma treatment leads to the formation of a doped surface layer with high hardness.


1993 ◽  
Vol 115 (1) ◽  
pp. 76-82 ◽  
Author(s):  
S. R. Bala ◽  
L. Malik ◽  
J. E. M. Braid

A primary consideration in the welding of structures for service in Canadian offshore and arctic regions is the toughness of weld metals required at very low ambient temperatures (−30°C to −60°C). To assess the suitability of cored wires for applications in these environments, some currently available commercial consumables for the flux-cored arc welding (FCAW) process were evaluated. Cored wires belonging to four different categories: basic, rutile, metal-cored and innershield, were used to prepare welds with similar welding procedures. Weld metal Charpy V-notch (CVN) and crack tip opening displacement (CTOD) tests were carried out and the effect of weld metal composition, microstructure and inclusion content in the weld metal toughness was examined. The Charpy transition temperatures and the CTOD toughness results indicated that, of the 16 wires tested, there were only seven that would be suitable for critical applications.


2014 ◽  
Vol 926-930 ◽  
pp. 246-249 ◽  
Author(s):  
Yu Feng Zhang ◽  
Min Rui Li ◽  
Jian Cheng Wang

It discussed repairing the worn engine crankshaft with chromium series metal powder-cored wire. The Mo, Mn, V, Ti metal powder and the SiC ultrafine particles, WC nanopowder added in chromium series metal powder-cored wire. That made the surfacing layer obtained high bonding strength, high hardness, and obtained high fracture toughness. The result indicated the SiC ultrafine particles/WC nanopowder could promotion the in-situ reaction in the surfacing layer, formed the dissemination strengthening, the melting strengthening and so on multi-mechanism strengthening effect. SiC and the metal matrix was not merely the mechanical bond, the partial regions were by the chemical bond. That realized in the structure continuity. And the repaired crankshaft surface wear-resisting disposition enhanced 24% than the original.


2021 ◽  
Vol 58 (6) ◽  
pp. 332-353
Author(s):  
A. Kisasoz ◽  
M. Tümer ◽  
A. Karaaslan

Abstract In this study, the effect of multipass welding on the microstructure, mechanical and corrosion properties of the UNS 32205 duplex stainless steels (DSS) is investigated. The UNS 32205 DSS is welded in 3 or 7 passes by flux-cored arc welding (FCAW) using E2209 T1 – 1/4 flux cored wire. The weldments are characterized by light optical microscopy (LOM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Feritscope analysis, Charpy impact tests and electrochemical corrosion tests. The results suggest that the multipass FCAW process induces the formation of γ2 in the weld seam. The mechanical and the corrosion properties of the weld joints are affected by the heat input variation and the phase transformations. Especially, the formation of the γ2 in the weld seam results in a decrease in the corrosion resistance of the joint samples.


2021 ◽  
pp. 215-220
Author(s):  
Nguyen Van Trieu ◽  
N.A. Astafeva ◽  
A.E. Balanovsky ◽  
A.N. Baranov

In the process of plasma surface hardening, coatings based on a mixture of CuSn alloy and 10/20 % OK 84.78 additive with high hardness were obtained. The study of the microstructures of the coatings showed that the content of the austenite phase decreases with an increase in the content of chromium carbide in the composition. The influence of the acidity parameter on the corrosion resistance of the alloyed surface layer with the composition of the mixture of alloys CuSn and the coating of the welding electrode OK 84.78 was evaluated. Corrosion control in 3% NaCl solutions with different pH values showed that the plasma coating has high corrosion resistance at pH = 7 and decreases by 2 times at pH = 3. An increase in the chromium content leads to an increase in the corrosion potential, and the presence of cracks leads to an increase in the corrosion current density.


Author(s):  
E.R. Sampson

Abstract The use of cored wires for thermal spraying is a relatively new development that is being rapidly utilized for arc spray in a wide variety of applications. This paper will discuss the existing applications and industries in which cored wire coatings are used. Additionally, this presentation will cover the effect cored wires have had on the use ofother types ofthermal spray equipment. The paper will close with a trend analysis that discusses the applications of the future.


Sign in / Sign up

Export Citation Format

Share Document