scholarly journals Microstructure of the Bonding Zone Between AZ91 and AlSi17 Formed by Compound Casting

2017 ◽  
Vol 17 (1) ◽  
pp. 202-206 ◽  
Author(s):  
R. Mola ◽  
T. Bucki ◽  
A. Dziadoń

AbstractThis paper discusses the joining of AZ91 magnesium alloy with AlSi17 aluminium alloy by compound casting. Molten AZ91 was cast at 650°C onto a solid AlSi17 insert placed in a steel mould under normal atmospheric conditions. Before casting, the mould with the insert inside was heated up to about 370°C. The bonding zone forming between the two alloys because of diffusion had a multiphase structure and a thickness of about 200 μm. The microstructure and composition of the bonding zone were analysed using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results indicate that the bonding zone adjacent to the AlSi17 alloy was composed of an Al3Mg2intermetallic phase with not fully consumed primary Si particles, surrounded by a rim of an Mg2Si intermetallic phase and fine Mg2Si particles. The bonding zone near the AZ91 alloy was composed of a eutectic (an Mg17Al12intermetallic phase and a solid solution of Al and Si in Mg). It was also found that the compound casting process slightly affected the AZ91 alloy microstructure; a thin layer adjacent to the bonding zone of the alloy was enriched with aluminium.

2020 ◽  
Vol 66 (7-8) ◽  
pp. 439-448
Author(s):  
Renata Mola ◽  
Tomasz Bucki

Liquid-solid compound casting was used to produce two types of AZ91/AlSi12 joints. The magnesium alloy was the cast material poured onto a solid aluminium alloy insert with an unmodified or modified structure. The bonding zone obtained for the unmodified insert was not uniform in thickness. There was a eutectic region (Mg17Al12 + a solid solution of Al in Mg) in the area closest to the AZ91. The region adjacent to the AlSi12 had a non-uniform structure with partly reacted Si particles surrounded by the Mg2Si phase and agglomerates of Mg2Si particles unevenly distributed in the Mg-Al intermetallic phases matrix. Cracks were detected in this region. In the AZ91/AlSi12 joint produced with a thermally modified AlSi12 insert, the bonding zone was uniform in thickness. The region closest to the AZ91 alloy also had a eutectic structure. However, significant microstructural changes were reported in the region adjacent to the modified AlSi12 alloy. The microstructure of the region was uniform with no cracks; the fine Mg2Si particles were evenly distributed over the Mg-Al intermetallic phase matrix. The study revealed that in both cases the microhardness of the bonding zone was several times higher than those of the individual alloys; however, during indenter loading, the bonding zone fabricated from modified AlSi12 alloy was less prone to cracking.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4010
Author(s):  
Grzegorz Banaszek ◽  
Teresa Bajor ◽  
Anna Kawałek ◽  
Tomasz Garstka

This paper presents the results of numerical tests of the process of forging magnesium alloy ingots (AZ91) on a hydraulic press with the use of flat and proprietary shaped anvils. The analysis of the hydrostatic pressure distribution and the deformation intensity was carried out. It is one of the elements used for determining the assumptions for the technology of forging to obtain a semi-finished product from the AZ91 alloy with good strength properties. The aim of the research was to reduce the number of forging passes, which will shorten the operation time and reduce the product manufacturing costs. Numerical tests of the AZ91 magnesium alloy were carried out using commercial Forge®NxT software.


2016 ◽  
Vol 16 (1) ◽  
pp. 13-18
Author(s):  
J. Iwaszko ◽  
M. Strzelecka

Abstract In this study, modification of the AZ91 magnesium alloy surface layer with a CO2 continuous wave operation laser has been taken on. The extent and character of structural changes generated in the surface layer of the material was being assessed on the basis of both macro- and microscopy investigations, and the EDX analysis. Considerable changes in the structure of the AZ91 alloy surface layer and the morphology of phases have been found. The remelting processing was accompanied by a strong refinement of the structure and a more uniform distribution of individual phases. The conducted investigations showed that the remelting zone dimensions are a result of the process parameters, and that they can be controlled by an appropriate combination of basic remelting parameters, i.e. the laser power, the distance from the sample surface, and the scanning rate. The investigations and the obtained results revealed the possibility of an effective modification of the AZ91 magnesium alloy surface layer in the process of remelting carried out with a CO2 laser beam.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 789 ◽  
Author(s):  
Farzad Soleymani ◽  
Rahmatollah Emadi ◽  
Sorour Sadeghzade ◽  
Fariborz Tavangarian

Magnesium alloys have received a great amount of attention regarding being used in biomedical applications; however, they show high degradability, poor bioactivity, and biocompatibility. To improve these properties, surface modification and various types of coatings have been applied. In this study, an anodized AZ91 alloy was coated with a polymer matrix composite made of polycaprolactone/chitosan (PCL/Ch) with different percentages of baghdadite to improve its resistance to corrosion, bioactivity, and biocompatibility. The effects of different percentages of baghdadite (0 wt %, 1 wt %, 3 wt %, and 5 wt %) on the surface microstructure, corrosion resistance, roughness, and wettability were evaluated. The results indicated that the applied nano-polymer-ceramic coating including 3 wt % baghdadite was hydrophobic, which consequently increased the corrosion resistance and decreased the corrosion current density of the anodized AZ91 alloy. Coating with 3 wt % baghdadite increased the roughness of AZ91 from 0.329 ± 0.02 to 7.026 ± 0.31 μm. After applying the polymer-ceramic coating on the surface of anodized AZ91, the corrosion products changed into calcium–phosphate compounds instead of Mg(OH)2, which is more stable in a physiological environment.


2005 ◽  
Vol 475-479 ◽  
pp. 541-544 ◽  
Author(s):  
Hwa Chul Jung ◽  
Young Cheol Lee ◽  
Kwang Seon Shin

Magnesium die-casting has experienced dramatic growth over the past decade and the recycling of magnesium scrap has become increasingly important due to the generation of substantial quantities of scrap in the die-casting process. Magnesium is a readily recyclable material and the recycling of magnesium scrap is crucial in making magnesium more competitive. The main concern associated with using the secondary magnesium is the high level of Fe content and oxide inclusions that are detrimental to the corrosion and mechanical properties of the secondary alloy. In this study, the die-cast specimens were produced using the recycled class 1 scrap which is refined by means of Ar bubbling and Mn addition without using refining fluxes, and their mechanical properties and corrosion characteristics were investigated. The results showed that the tensile properties of the secondary AZ91 alloy were equivalent to those of the primary magnesium alloy after appropriate treatments. The corrosion resistance of the recycled magnesium was also found to increase by Ar bubbling and Mn addition.


2011 ◽  
Vol 306-307 ◽  
pp. 471-474
Author(s):  
Yong Zhi Zhou ◽  
Hao Ran Geng ◽  
Yu Jie Sun ◽  
Mei Li

Microstructure and mechanical behaviors of AZ91 cast magnesium alloys with melt superheating and thermal rate treatment technique were studied. Alloy grains thicken at 820°C and refine at 870°C when they contains Mn element and the crucible had no coating on the internal surface. Moreover, the strengthening γ phase is more dispersive and uniform at 870°C. Thermal rate treatment significantly improved the microstructure, mechanical behaviors and casting quality of AZ91 alloy as microstructure of AZ91 alloy reserves some characteristics of the high temperature melt.


2012 ◽  
Vol 710 ◽  
pp. 365-370 ◽  
Author(s):  
Sujayakumar Prasanth ◽  
Kumaraswamy Kaliamma Ajith Kumar ◽  
Thazhavilai Ponnu Deva Rajan ◽  
Uma Thanu Subramonia Pillai ◽  
Bellambettu Chandrasekhara Pai

Magnesium metal matrix composites (MMCs) have been receiving attention in recent years as an attractive choice for aerospace and automotive applications because of their low density and superior specific properties. Using stir casting process, AZ91 magnesium alloy metal matrix composites have been produced with different weight percentages (5, 10, 15, 20 and 25) of silicon carbide particles (SiCp) addition. Microstructural characterization reveals uniform distribution of SiC particles with good interfacial bonding between the matrix and reinforcement. Electrical conductivity and Co-efficient of Thermal Expansion (CTE) measurements carried out on these composites have yielded better properties. Improved mechanical properties such as hardness, ultimate tensile strength, and compressive strength are obtained. The microfracture mechanisms involved during tensile fracture is analyzed and correlated with the properties obtained.


Author(s):  
Mohd Imran Ansari ◽  
Dineshsingh G Thakur

Incorporation of fine nanoparticles and cationic surfactant (Aliquat 336) within an ENi–P matrix has given a new dimension to the field of nanocomposite coatings. It describes the surface engineering processes currently used for the protection of AZ91 magnesium alloy surface against wear, including electroless nano-composite coatings. The present work aims to investigate the influence of Aliquat 336 cationic surfactant on the microhardness and tribological properties of electroless (Ni–P–ZnO) ternary alloy nanocomposite coatings on AZ91 magnesium alloy substrate from acidic bath. The results revealed that there was a significant improvement in the microhardness and wear resistance of the coated surface by the addition of cationic surfactant at a concentration of 1.5 g/L as compared to the coating obtained without the addition of cationic surfactant in the chemical bath. These results are thus clearly indicative of the fact that the component of life of members made from substrate subjected to nanocomposite coatings with varying the concentration of surfactant can be greatly improved, thereby preventing early or regular failures, and increasing service life.


2007 ◽  
Vol 546-549 ◽  
pp. 155-158
Author(s):  
Qu Dong Wang ◽  
Yang Zhao ◽  
Qing Hua Li

Effects of CaCO3 modificator on microstructure and mechanical properties of cast AZ91 Magnesium alloy have been investigated. Tensile fracture behavior of AZ91 alloys modified by CaCO3 has also been studied. Results show that CaCO3 modificator can obviously refine the grain of AZ91 magnesium alloy and Mg17Al12. Mg17Al12 in grain boundary of AZ91 alloy after modified by CaCO3 changes from continuous reticular structure to discontinuous reticular structure, even so much as granular structure and rod structure. After modified by 0.5wt% CaCO3 modificator, ultimate tensile strength, yield strength, impact toughness and elongation of AZ91 alloy increase from 186MPa to 200MPa, from 147MPa to 160MPa, from 4J to 9J and from 2.6% to 5%, respectively. And 0.5wt% CaCO3 modificator brings about an optimal refining effect. The study also shows that the fracture mechanism of modified AZ91 alloy is between cleavage fracture and quasi-cleavage fracture, which is as same as that of unmodified AZ91 alloy.


2008 ◽  
Vol 141-143 ◽  
pp. 427-432 ◽  
Author(s):  
Ali Khosravani ◽  
Hossein Aashuri ◽  
P. Davami ◽  
A. Narimannezhad ◽  
A. Foroughi ◽  
...  

Globulization of the grain refined AZ91 magnesium alloy with Ca on a cooling slope was investigated. Dendritic morphology of the grains was transferred into round and well distributed small particles as a result of grain-refinement effect of Ca in the alloy. Semi-solid holding of the alloy was carried out at different temperatures to improve the spherecity of the globules. Results show that, remelting at 540 °C for 30 min provides the best shape factor for the alloy. The study of coarsening kinetic in this alloy showed lower growth rate alternative other research which used same condition for produce semi-solid billet just in using Ca.


Sign in / Sign up

Export Citation Format

Share Document