scholarly journals Research Of Effect Of Low Frequency Magnetic Field On Germination, Growth And Fruiting Of Field Tomatoes

2015 ◽  
Vol 18 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Jaroslav Jedlička ◽  
Oleg Paulen ◽  
Štefan Ailer

AbstractIn the study regarding with tomatoes, the impact of extremely low frequency electromagnetic fields on seed germination of tomato (Solanum lycopersicumL.) after treatment before sowing, as well as the growth following electromagnetic stimulation of young plants at a time before planting in the field, and fruittraits was investigated. In the experiments conducted in two consecutive years (2012 and 2013), we followed the time of seed germination of tomato variety “Pavlina”, plant growth and the fruitsize. Magnetization of seeds and young plants was carried out in laboratory conditions, and plant growth and fruits were followed in field conditions where plants were grown on experimental plots (25.0 m2). The plants were grown in accordance with the standards of agricultural practice for tomato. At the generative phase, fruits were collected at regular intervals, and their number and weight were evaluated. Low frequency electromagnetic fields acting at the three inductance levels (20, 40 and 60 mT) and exposure of 20 minutes a day with frequency of 50 Hz, significantly influenced the germination, plant growth and fruitsize of the studied tomato variety.

2011 ◽  
Vol 18 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Maria Laura Lopes de Carvalho ◽  
Roberta Motta ◽  
Giovanna Konrad ◽  
Mario Alberto Battaglia ◽  
Giampaolo Brichetto

Background: Fatigue is one of the most common disabling symptoms in multiple sclerosis (MS). There is growing evidence in the literature for beneficial effects of magnetic fields on different MS symptoms and this has been reported to be beneficial in patients with MS, especially those with fatigue. Objectives: The aim of the study was to assess the effects on primary fatigue with a pulsed systemic low frequency magnetic field by means of clinical scales in a population of MS subjects. Methods: Randomized double-blind cross-over trial with 50 MS subjects with primary fatigue who were recruited among those followed as outpatients at the AISM Rehabilitation Centre, Genova, Italy. Subjects were randomized into two groups: magnetic field group and sham therapy group and evaluated with the Modified Fatigue Impact Scale (MFIS), the Fatigue Severity Scale (FSS), VAS and Time Walking Test 10 meter (TWT10m.) at the time points of the study. Each group received both sham therapy and magnetic field therapy with a wash-out period of 5 months. Subjects were treated for 24 min per session, three times per week, for 8 weeks. Statistical analysis was performed using multivariate analysis. Results: Results showed a statistically significant improvement in MFIS Physical Score for T0 − T1 ( p < 0.05) for TIME but not for TREATMENT and TIME*TREATMENT factors. No statistically significant differences were found for all other parameters considered in the study. Conclusions: Exposure to a low frequency magnetic field, within the parameters of this treatment protocol, has no advantage over sham exposure in reducing the impact of fatigue.


Author(s):  
Nafiseh Faraji ◽  
◽  
Iraj Salehi ◽  
Akram Alizadeh ◽  
Arash Pourgholaminejad ◽  
...  

Background: Extremely low-frequency electromagnetic fields (ELF-EMFs) have gathered significant consideration for their possible pathogenicity. However, their effects on nervous system functions were not fully clarified. In this study, our aim was to assay the effect of ELF-EMFs with different intensity on memory, anxiety, antioxidant activity, beta amyloid (Aβ) deposition and microglia population in rats. Materials and Methods: Fifty male adult rats were randomly separated into 5 groups; four groups exposed to a flux density of 1, 100, 500 and 2000 microtesla (µT), 50 Hertz (Hz) frequency for 1h/day for 2 months and one group as a control group. The control group were without ELF-EMF stimulation. After 8 weeks, passive avoidance and elevated plus maze (EPM) tests was performed to assess memory formation and anxiety-like behavior, respectively. Total free thiol groups and the index of lipid peroxidation were assessed. Also, for detection of β-Amyloid deposition and stained microglia in the brain, anti-β-amyloid and anti-Iba1 antibodies were used. Results: In the ELF-EMF exposure groups, the step-through latency was significantly greater in the retention test (100,500, and 2000 µT) than in the control group (P<0.05). Also, the percentage of the entries into the open arms in ELF-EMF exposure groups (especially 2000 µT) decreased than control group (P <0.05). No β-Amyloid depositions were detected in the hippocampus of different groups. An increase in microglia numbers in the 100, 500 and 2000 µT groups was observed in compare to the control and 1 µT group. Conclusion: Exposure to ELF-EMF had an anxiogenic effect on rats and promoted memory and also induced oxidative stress. No β-Amyloid depositions were detected in the brain. Also, positive effect of ELF-EMF was observed on population of microglia population in the brain.


2019 ◽  
Vol 70 (8) ◽  
pp. 649
Author(s):  
Noura Bechtaoui ◽  
Abdelkhalek El Alaoui ◽  
Anas Raklami ◽  
Loubna Benidire ◽  
Abdel-ilah Tahiri ◽  
...  

Intercropping is a farming practice that fights pests and diseases and improves plant growth. The use of plant growth-promoting rhizobacteria (PGPR) strains to boost the yield of intercrops constitutes a promising tool in agricultural practice. This study investigated the impact of single inoculation and co-inoculation with PGPR on plant biomass and phosphorus (P) and nitrogen (N) concentrations under different cropping systems. Two PGPR strains with different traits were selected: PGP13 (Rahnella aquatilis) and PS11 (Pseudomonas sp.). A greenhouse experiment was designed using durum wheat (Triticum durum L.) and faba bean (Vicia faba L.), sole cropped or intercropped, including four inoculation treatments: (i) uninoculated, (ii) inoculated with PS11 (iii) inoculated with PGP13, and (iv) co-inoculated with PS11 + PGP13. Co-inoculation under the intercropping system improved plant dry matter and enhanced bean pod and wheat spike weights to 685.83% and 385.83%, respectively, of the values for uninoculated, intercropped plants. Higher P and N concentrations were detected in intercropped, co-inoculated plants and in bean pods and wheat spikes. The results were then submitted to principal component analysis, showing that treatments with higher biomass and nutrient concentrations were strongly correlated with intercropped, co-inoculated plants.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniela Barrera ◽  
Juan Luera ◽  
Kaitlynn Lavallee ◽  
Pushpa Soti

Abstract Background Using native wildflowers for restoring marginal lands has gained considerable popularity. Establishment of wildflowers can be challenging due to several environmental factors. Restoring the microbial community in degraded habitats can potentially result in the native plant performance and habitat restoration. This study was conducted to investigate the impact of native soil microbes and seeding depth on germination of south Texas native wildflowers. Two wildflower species, Ratibida columnifera (Nutt.) (Mexican Hat) and Verbesina encelioides (Cav.) (cowpen daisy), were treated with microbial wash extracted from native soils, and germination rate was recorded for 14-day period. We further analyzed the growth, biomass allocation, and root colonization by mycorrhizal fungi in these two plants growing them in a plant growth chamber for 6 weeks. To determine the impact of seeding depth, we planted the seeds of the two plant species at 2-cm, 6-cm, and 12-cm depth and monitored germination and plant growth. Results The two species responded differently to the seeding depth and microbial wash treatments. Microbial wash treatment resulted in higher germination rate in R. columnifera compared to control, while it did not have any impact on V. encelioides seed germination. While microbial treatment did not influence the total biomass, it had a significant impact on the biomass allocation in both the plant species. R. columnifera seeds germinated at both 2-cm and 6-cm depth and did not germinate at 12 cm, while the V. encelioides seeds germinated only at 2 cm and did not germinate at 6-cm or 12-cm seeding depth. Conclusions While our results are species specific, our results indicate that native soil microbes can potentially improve the seed germination and growth of wildflowers. Our results also indicate the importance of specific seeding depth when sowing wildflower seeds for habitat restoration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter M. Bourke ◽  
Jochem B. Evers ◽  
Piter Bijma ◽  
Dirk F. van Apeldoorn ◽  
Marinus J. M. Smulders ◽  
...  

Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., “trait-based” breeding) or quantitative genetics-driven (i.e., “product-based” breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.


2020 ◽  
Vol 48 (3) ◽  
pp. 1458-1464
Author(s):  
Xian-Zong XIA ◽  
Gregorio PADULA ◽  
Leszek KUBISZ ◽  
Roman HOŁUBOWICZ

In recent years, the application of magnetism in agriculture has been paid more and more attention to, especially in the field of its treatment on the seed germination and physiological indexes of seedlings grown out of them. In this experiment, the radish (Raphanus sativus L.) seeds of two cultivars ‘Carmen’ and ‘Szkarłatna z Białym Końcem’ were treated by 20 mT low frequency magnetic field (LFMF) for 10, 30 and 60 minutes, respectively. The MF was generated from a Viofor JPS Delux - a patented device adopted from the routine medical magnetic therapy. By measuring their seed germination rate (energy), seedling length and fresh weight, it was proved that LFMF improved the seed quality of both radish cultivars and the best results were received for the longest exposing time. The received that way results were similar as reported for priming of radish seeds. The developed treatment has a great potential in replacing traditional seed priming methods. However, for its commercial use, for selected crops and cultivars, further research is still needed.


Sign in / Sign up

Export Citation Format

Share Document