scholarly journals Advances in mass cytometry and its applicability to digital pathology in clinical-translational cancer research

Author(s):  
Karina Cereceda ◽  
Roddy Jorquera ◽  
Franz Villarroel-Espíndola

Abstract The development and subsequent adaptation of mass cytometry for the histological analysis of tissue sections has allowed the simultaneous spatial characterization of multiple components. This is useful to find the correlation between the genotypic and phenotypic profile of tumor cells and their environment in clinical-translational studies. In this revision, we provide an overview of the most relevant hallmarks in the development, implementation and application of multiplexed imaging in the study of cancer and other conditions. A special focus is placed on studies based on imaging mass cytometry (IMC) and multiplexed ion beam imaging (MIBI). The purpose of this review is to help our readers become familiar with the verification techniques employed on this tool and outline the multiple applications reported in the literature. This review will also provide guidance on the use of IMC or MIBI in any field of biomedical research.

Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Dirk Doyle ◽  
Lawrence Benedict ◽  
Fritz Christian Awitan

Abstract Novel techniques to expose substrate-level defects are presented in this paper. New techniques such as inter-layer dielectric (ILD) thinning, high keV imaging, and XeF2 poly etch overflow are introduced. We describe these techniques as applied to two different defects types at FEOL. In the first case, by using ILD thinning and high keV imaging, coupled with focused ion beam (FIB) cross section and scanning transmission electron microscopy (STEM,) we were able to judge where to sample for TEM from a top down perspective while simultaneously providing the top down images giving both perspectives on the same sample. In the second case we show retention of the poly Si short after removal of CoSi2 formation on poly. Removal of the CoSi2 exposes the poly Si such that we can utilize XeF2 to remove poly without damaging gate oxide to reveal pinhole defects in the gate oxide. Overall, using these techniques have led to 1) increased chances of successfully finding the defects, 2) better characterization of the defects by having a planar view perspective and 3) reduced time in localizing defects compared to performing cross section alone.


1992 ◽  
Vol 267 (21) ◽  
pp. 15210-15216
Author(s):  
K.C. Zoon ◽  
D Miller ◽  
J Bekisz ◽  
D zur Nedden ◽  
J.C. Enterline ◽  
...  

Author(s):  
P. Wei ◽  
M. Chicoine ◽  
S. Gujrathi ◽  
F. Schiettekatte ◽  
J.-N. Beaudry ◽  
...  

1988 ◽  
Vol 19 (7) ◽  
pp. 1215-1218 ◽  
Author(s):  
Bengt G. Martinsson ◽  
Hans-Christen Hansson

Sign in / Sign up

Export Citation Format

Share Document