scholarly journals The Effect of Stepped Austempering on Phase Composition and Mechanical Properties of Nanostructured X37CrMoV5-1 Steel

2015 ◽  
Vol 60 (1) ◽  
pp. 517-521
Author(s):  
S. Marciniak ◽  
E. Skołek ◽  
W. Świątnicki

AbstractThis paper presents the results of studies of X37CrMoV5-1 steel subjected to quenching processes with a one-step and a two-step isothermal annealing. The TEM observation revealed that steel after one-step treatment led is composed of carbide-free bainite with nanometric thickness of ferrite plates and of high volume fraction of retained austenite in form of thin layers or large blocks. In order to improve the strength parameters an attempt was made to reduce the austenite content by use of quenching with the two-step isothermal annealing. The temperature and time of each step were designed on the basis of dilatometric measurements. It was shown, that the two-step heat treatment led to increase of the bainitic ferrite content and resulted in improvement of steel's strength with no loss of steel ductility.

2018 ◽  
Vol 941 ◽  
pp. 329-333 ◽  
Author(s):  
Jiang Ying Meng ◽  
Lei Jie Zhao ◽  
Fan Huang ◽  
Fu Cheng Zhang ◽  
Li He Qian

In the present study, the effects of ausforming on the bainitic transformation, microstructure and mechanical properties of a low-carbon rich-silicon carbide-free bainitic steel have been investigated. Results show that prior ausforming shortens both the incubation period and finishing time of bainitic transformation during isothermal treatment at a temperature slightly above the Mspoint. The thicknesses of bainitic ferrite laths are reduced appreciably by ausforming; however, ausforming increases the amount of large blocks of retained austenite/martenisite and decreases the volume fraction of retained austenite. And accordingly, ausforming gives rise to significant increases in both yield and tensile strengths, but causes noticeable decreases in ductility and impact toughness.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 573
Author(s):  
Jing Zhao ◽  
Dezheng Liu ◽  
Yan Li ◽  
Yongsheng Yang ◽  
Tiansheng Wang ◽  
...  

The microstructures and mechanical properties of ausrolled nanobainite steel, after being tempered at temperatures in the range of 200−400 °C, were investigated in this study. After being tempered, bainitic ferrite is coarsened and the volume fraction of retained austenite is reduced. The hardness and ultimate tensile strength decrease sharply. The impact energy, yield strength, and elongation increase with elevated tempered temperature at 200–300 °C but decrease with elevated tempered temperature when the samples are tempered at 350 °C and 400 °C. The fracture appearance of all the samples after impact tests is a brittle fracture. The variation of the mechanical properties may be due to partial recovery and recrystallization.


2015 ◽  
Vol 60 (1) ◽  
pp. 511-516 ◽  
Author(s):  
E. Skołek ◽  
S. Marciniak ◽  
W.A. Świątnicki

AbstractThe aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of cementite precipitations. At the initial stage of annealing cementite precipitations occurred in the interfaces between ferritic bainite and austenite. With increasing temperature of annealing, the volume fraction and size of cementite precipitations also increased. Simultaneously fine spherical Fe7C3carbides appeared. At the highest annealing temperature the large, spherical Fe7C3carbides as well as cementite precipitates inside the ferrite grains were observed. Moreover the volume fraction of bainitic ferrite and of freshly formed martensite increased in steel as a result of retained austenite transformation during cooling down to room temperature.


2010 ◽  
Vol 654-656 ◽  
pp. 286-289 ◽  
Author(s):  
Sea Woong Lee ◽  
Kyoo Young Lee ◽  
Bruno C. De Cooman

Ultra-fine grained TRIP steels (UFG-TRIP) containing 6wt%Mn were produced by intercritical annealing. An ultra-fine grained microstructure with a grain size less than 1μm was obtained. The formation mechanism of the high volume fraction of retained austenite was investigated by dilatometry, XRD and magnetic saturation. The fraction of retained austenite was strongly dependent on the annealing temperature. The tensile properties were also found to be strongly influenced by the annealing temperature with poorer mechanical properties being observed at higher annealing temperatures. It was found that the stabilization of the retained austenite was both a composition and size-effect, made possible by the grain refinement due to the reversely transformed martensite.


2004 ◽  
Vol 40 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Olivera Eric ◽  
Marina Jovanovic ◽  
Leposava Sidjanin ◽  
Dragan Rajnovic

Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 and 5h, a microstructure typical for austempered ductile iron was produced, i.e. a mixture of free bainitic ferrite and highly carbon enriched retained austenite. The characteristic of the whole range of austempering at 400oC is the appearance of martensitic structure. The maximum impact energy (133 J) coincides with the maximum value of volume fraction of retained austenite that was obtained after 2,5h of austempering at 320oC. The appearance of martensite during austempering at 400oC is the main cause for much lower tensile properties than at 320oC.


2007 ◽  
Vol 539-543 ◽  
pp. 4351-4356 ◽  
Author(s):  
Masayuki Wakita ◽  
Yoshitaka Adachi ◽  
Yo Tomota

This study aims at examining thermomechanical controlled process to realize ultrafine TRIP-aided multi-phase microstructures in low carbon steels. Heavy deformation at a supercooled austenite region was found to lead the formation of 2 μm ferrite as well as retained austenite with high volume fraction. The morphology of retained austenite was changed from film-like shape to granular shape with lowering finish rolling temperature in austenite field. This ultrafine TRIP-aided multi-phase steel showed good balance of tensile strength with total elongation, ie. 1080MPa and 26.9%. A novel in-situ neutron diffraction measurement demonstrated that the retained granular austenite transformed to martensite at a relatively large strain compared with the retained film austenite. The therein-underlying mechanism of the good mechanical properties was discussed from the view points of the morphological and thermodynamical stabilization of retained austenite.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1306
Author(s):  
Gong-Ting Zhang ◽  
Na-Qiong Zhu ◽  
Bo-Wei Sun ◽  
Zheng-Zhi Zhao ◽  
Zhi-Wang Zheng ◽  
...  

Three C-Si-Mn Q&P steels with different V addition after one-step and two-step quenching and partitioning (Q&P) processes were investigated by means of optical microstructure observation, X-ray diffraction (XRD) measurement, transmission electron microscopy (TEM) characterization and particle size distribution (PSD) analysis. The effect of V addition on strength and ductility of the steels was elucidated by comparative analysis on the microstructure and mechanical properties as functions of partitioning time and temperature. For one-step Q&P treatment, the mechanical properties were mainly controlled by the tempering behavior of martensite during partitioning. V addition was helpful to mitigate the deterioration of mechanical properties by precipitation strengthening and grain refinement strengthening. For two-step Q&P treatment, the satisfying plasticity was attributed to the transformation-induced plasticity (TRIP) effect of retained austenite maintaining the high work hardening rate at high strain regime. The higher volume fraction of retained austenite with high stability resulted from the refined microstructure and the promoted carbon partitioning for the steel with 0.16 wt% V addition. However, the carbon consumption due to the formation of VC carbides led to the strength reduction of tempered martensite.


2014 ◽  
Vol 968 ◽  
pp. 63-66 ◽  
Author(s):  
Fei Zhao ◽  
Zhan Ling Zhang ◽  
Jun Shuai Li ◽  
Cui Ye ◽  
Ni Li

The microstructure and mechanical properties of the four spring steels with different Si content treated by Q-I-Q-T process were studied by metallographic microscope, MTS, impact testing machine and X-ray stress analyzer. The results show that the tensile strength and yield strength is first increased and then decreased with the increase of Si content, the volume fraction of retained austenite and elongation are fist decreased and then increased when the Si content is less than 2.1%, and the microstructure become finer and homogeneous. When Si content reaches 2.1%, the comprehensive properties of 60Si2CrVA spring steel is the best.


2016 ◽  
Vol 838-839 ◽  
pp. 546-551
Author(s):  
Junya Kobayashi ◽  
Yumenori Nakashima ◽  
Koh Ichi Sugimoto ◽  
Goroh Itoh

The substitution of Si with Al in 0.2%C-1.5%Si-1.25%Mn-0.2%Cr ultrahigh strength transformation-induced plasticity (TRIP)-aided martensitic (TM) sheet steel improves galvanization. The effect of Al content on the microstructure and formabilities of the TM steel was therefore investigated. Replacement of Si with Al maintained the high volume fraction of the retained austenite and the high stretch-formability and stretch-flangeability, whereas it decreased the tensile strength. Complex addition of Si and Al yielded the best formabilities with 1.5 GPa tensile strength grade. The superior formabilities of Si-Al bearing TM steel were attributed to the strain-induced transformation of the metastable retained austenite and the relatively soft lath-martensite structure matrix. The former leads to plastic relaxation of the localized stress concentrations, thus suppressing void formation.


Sign in / Sign up

Export Citation Format

Share Document