Biosynthesis of N-Acetylneuraminic Acid in Cells Lacking UDP-N-Acetylglucosamine 2-Epimerase/ N-Acetylmannosamine Kinase

2001 ◽  
Vol 382 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Stephan Hinderlich ◽  
Markus Berger ◽  
Oliver T. Keppler ◽  
Michael Pawlita ◽  
Werner Reutter

Abstract The first two steps in mammalian biosynthesis of Nacetylneuraminic acid, an important carbohydrate moiety in biological recognition systems, are performed by the bifunctional enzyme UDPNacetylglucosamine 2-epimerase/Nacetylmannosamine kinase. A subclone of the human B lymphoma cell line BJAB K20, lacking UDPNacetylglucosamine 2- epimerase/Nacetylmannosamine kinase mRNA as well as epimerase activity, displayed hyposialylated, functionally impaired cell surface glycoconjugates. Here we show that this cell line surprisingly still retains Nacetylmannosamine kinase activity. A gel filtration analysis of BJAB K88 control cells, which express UDPNacetylglucosamine 2-epimerase/Nacetylmannosamine kinase, revealed two Nacetylmannosamine kinase activity peaks, one coeluting with UDPNacetylglucosamine 2-epimerase activity and one coeluting with Nacetylglucosamine kinase. For this enzyme previous studies already showed ManNAc kinase activity in vitro. In contrast, the hyposialylated BJAB K20 subclone displayed only the Nacetylmannosamine kinase peak, comigrating with Nacetylglucosamine kinase. The CMPNacetylneuraminic acid content of both K88 and K20 cells and the sialylation of cell surface glycoconjugates of K20 cells could be significantly increased by supple menting the medium with Nacetylmannosamine. This Nacetylmannosamineinduced increase was drastically reduced by cosupplementation with Nacetylglucosamine only in K20 cells. We therefore propose the phosphorylation of Nacetylmannosamine as a hitherto unrecognized role of Nacetylglucosamine kinase in living cells.

2013 ◽  
Vol 210 (4) ◽  
pp. 805-819 ◽  
Author(s):  
Reshmi Parameswaran ◽  
Min Lim ◽  
Anna Arutyunyan ◽  
Hisham Abdel-Azim ◽  
Christian Hurtz ◽  
...  

The development of resistance to chemotherapy is a major cause of relapse in acute lymphoblastic leukemia (ALL). Though several mechanisms associated with drug resistance have been studied in detail, the role of carbohydrate modification remains unexplored. Here, we investigated the contribution of 9-O-acetylated N-acetylneuraminic acid (Neu5Ac) to survival and drug resistance development in ALL cells. A strong induction of 9-O-acetylated Neu5Ac including 9-O-acetyl GD3 was detected in ALL cells that developed resistance against vincristine or nilotinib, drugs with distinct cytotoxic mechanisms. Removal of 9-O-acetyl residues from Neu5Ac on the cell surface by an O-acetylesterase made ALL cells more vulnerable to such drugs. Moreover, removal of intracellular and cell surface–resident 9-O-acetyl Neu5Ac by lentiviral transduction of the esterase was lethal to ALL cells in vitro even in the presence of stromal protection. Interestingly, expression of the esterase in normal fibroblasts or endothelial cells had no effect on their survival. Transplanted mice induced for expression of the O-acetylesterase in the ALL cells exhibited a reduction of leukemia to minimal cell numbers and significantly increased survival. This demonstrates that Neu5Ac 9-O-acetylation is essential for survival of these cells and suggests that Neu5Ac de-O-acetylation could be used as therapy to eradicate drug-resistant ALL cells.


Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


2021 ◽  
Vol 22 (3) ◽  
pp. 1163
Author(s):  
Gaia Palmini ◽  
Cecilia Romagnoli ◽  
Simone Donati ◽  
Roberto Zonefrati ◽  
Gianna Galli ◽  
...  

Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 171-187
Author(s):  
A. M. Duprat ◽  
L. Gualandris ◽  
P. Rouge

Lectins (SBA and PSA) were used to provoke crowding and structural modifications of the presumptive ectoderm cell surface in order to investigate the role of the membrane organization of the competent target cells in neural induction. Are specific characteristics of the cell surface essential for this phenomenon to occur? From amphibian gastrulae, it is possible to obtain neural induction in vitro by association of presumptive ectoderm (target cells) with chordamesoderm (inductor tissue): 4 h of contact is sufficient in Pleurodeles waltl for transmission of the inductive signal. Very quickly, the treatment of the normal ectoderm by lectins (SBA-FITC or PSA-FITC) provoked surface modifications. Lectin-treatment (50 µg ml1−, 30 min) of presumptive ectoderm did not result in any neural induction. Lectin-treatment (50 µg ml1−, 30 min) of presumptive ectoderm previous to its association with the natural inductor for 4 h, disturbed the phenomenon: no induction. Similar treatment followed by association with the inductor for 24 h: induction. Treatment of SBA or PSA with their respective hapten inhibitors prior to addition to ectodermal cells completely blocked the suppressive effects on induction. The structural integrity of the membrane of competent target cells is necessary for neural induction to occur. The cell membrane could thus play, directly or indirectly, an active role in the specificity of this process


Author(s):  
Kristin Schirmer ◽  
Katrin Tanneberger ◽  
Nynke I. Kramer ◽  
Frans J.M. Busser ◽  
Joop L.M. Hermens ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10371
Author(s):  
Liqun Tang ◽  
Jianhong Xie ◽  
Xiaoqin Yu ◽  
Yangyang Zheng

Background The role of miR-26a-5p expression in cardiac hypertrophy remains unclear. Herein, the effect of miR-26a-5p on cardiac hypertrophy was investigated using phenylephrine (PE)-induced cardiac hypertrophy in vitro and in a rat model of hypertension-induced hypertrophy in vivo. Methods The PE-induced cardiac hypertrophy models in vitro and vivo were established. To investigate the effect of miR-26a-5p activation on autophagy, the protein expression of autophagosome marker (LC3) and p62 was detected by western blot analysis. To explore the effect of miR-26a-5p activation on cardiac hypertrophy, the relative mRNA expression of cardiac hypertrophy related mark GSK3β was detected by qRT-PCR in vitro and vivo. In addition, immunofluorescence staining was used to detect cardiac hypertrophy related mark α-actinin. The cell surface area was measured by immunofluorescence staining. The direct target relationship between miR-26a-5p and GSK3β was confirmed by dual luciferase report. Results MiR-26a-5p was highly expressed in PE-induced cardiac hypertrophy. MiR-26a-5p promoted LC3II and decreased p62 expression in PE-induced cardiac hypertrophy in the presence or absence of lysosomal inhibitor. Furthermore, miR-26a-5p significantly inhibited GSK3β expression in vitro and in vivo. Dual luciferase report results confirmed that miR-26a-5p could directly target GSK3β. GSK3β overexpression significantly reversed the expression of cardiac hypertrophy-related markers including ANP, ACTA1 and MYH7. Immunofluorescence staining results demonstrated that miR-26a-5p promoted cardiac hypertrophy related protein α-actinin expression, and increased cell surface area in vitro and in vivo. Conclusion Our study revealed that miR-26a-5p promotes myocardial cell autophagy activation and cardiac hypertrophy by regulating GSK3β, which needs further research.


Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 254-257
Author(s):  
D’Souza Renita Maria ◽  
Abraham Asha

Introduction and Aim: This study reports the cytotoxic potential of L-Asparaginase isolated from the fungus Scopulariopsis brevicaulis. Materials and Methods: Extracellular L- Asparaginase was isolated from Scopulariopsis brevicaulis and purified by ammonium sulfate precipitation, followed by dialysis, ion exchange and gel filtration chromatography. Varying concentrations (31.25, 62.5, 125, 250, 500 µg/ml) of purified L-Asparaginase was tested on MCF7, HeLa, HepG2 and 3T3L1cell lines by MTT assay. Curcumin was maintained as a positive control. Results: Minimum inhibition of 23.57% was observed at an enzyme concentration of 31.25 µg/ml and maximum inhibition (66.41%) was observed at 500 µg/ml against MCF7 cell line. Minimum inhibition of 2.87% was observed at an enzyme concentration 31.25 µg/ml and maximum inhibition (58.49%) was observed at 500 µg/ml against HeLa cell line. Minimum inhibition of 4.58% was shown at an enzyme concentration of 31.25 µg/ml and maximum inhibition (46.14 %) was observed at 500 µg/ml against HepG2 cell line. Minimum inhibition of 1.4% was shown by enzyme concentration 31.25 µg/ml and maximum inhibition (50.9%) was observed at 500 µg/ml against 3T3L1 cell line. Conclusion: We report for the first time the cytotoxic potential of L-Asparaginase from Scopulariopsis brevicaulis.  


1991 ◽  
Vol 11 (4) ◽  
pp. 307-316 ◽  
Author(s):  
J. Thomas Hjelle ◽  
Barbara T. Golinska ◽  
Diane C. Waters ◽  
Kevin R. Steidley ◽  
Marcia A. Miller ◽  
...  

A survey of lectin-binding specificities present on rodent and human mesothelial cells propagated and maintained in tissue culture was made using fluorescein isothiocynate conjugated (FITC) lectins. Rodent and human cells exhibited cell-associated fluorescence following exposure to the FITC-Iectins from C. ensiformis, T. vulgaris, A. hypogaea, E. cristagalli and B. simplicifolia, but not with lectins from G. max and D. biflorus. Rodent cells were also positive for FITC-M. pomifera lectin binding. Human, but not rodent, cells were positive for FITC T. purpureas lectin binding. Exposure of rabbit mesothelial cells in vitro to FITC-Iectins that bound to the cell surface resulted in the appearance of discrete loci of putatively intracellular fluorescence. Exposure of cells to ferritin-Iabelled T. vulgaris lectin at 37°C for as little as 7.5 minutes resulted in the appearance of ferritin-size particles in intracellular vesicles. These results demonstrate 1. the presence of lectinbinding sites in and on peritoneal mesothelial cells from rodents and humans and 2. a possible role of such sites in mediating the entry of lectin-Iike endogenous molecules into the vacuolar apparatus of these cells.


1996 ◽  
Vol 271 (1) ◽  
pp. E1-E14 ◽  
Author(s):  
K. V. Kandror ◽  
P. F. Pilch

Insulin-sensitive cells, adipocytes and myocytes, translocate a number of intracellular proteins to the cell surface in response to insulin. Among these proteins are glucose transporters 1 and 4 (GLUT-1 and GLUT-4, respectively), receptors for insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) and transferrin, the aminopeptidase gp 160, caveolin, and a few others. In the case of insulin-activated glucose transport, this translocation has been proven to be the major, if not the only regulatory mechanism of this process. It seems likely that the cell surface recruitment of the IGF-II/Man-6-P and transferrin receptors also serves the nutritional needs of cells, whereas the physiological role of the aminopeptidase gp160 remains uncertain. Analysis of the compartmentalization and trafficking pathways of translocatable proteins in fat cells identified more than one population of recycling vesicles, although all have identical sedimentation coefficients and buoyant densities in vitro. GLUT-4-containing vesicles include essentially all the intracellular GLUT-4, gp160, and the acutely recycling populations of receptors for IGF-II/Man-6-P and transferrin. Besides these proteins, which can be considered as vesicle “cargo”, GLUT-4-containing vesicles have other components, like secretory carrier-associated membrane proteins (SCAMP), Rab(s), and vesicle-associated membrane protein (VAMP)/cellubrevin, which are ubiquitous to secretory vesicles and granules from different tissues. GLUT-1 and caveolin are excluded from GLUT-4-containing vesicles and form different vesicular populations of unknown polypeptide composition. In skeletal muscle, two independent populations of GLUT-4-containing vesicles are found, insulin sensitive and exercise sensitive, which explains the additive effect of insulin and exercise on glucose uptake. Both vesicular populations are similar to each other and to analogous vesicles in fat cells.


Sign in / Sign up

Export Citation Format

Share Document