CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis

2009 ◽  
Vol 390 (11) ◽  
Author(s):  
Ke Xiao ◽  
Franz Jehle ◽  
Christoph Peters ◽  
Thomas Reinheckel ◽  
R. Heiner Schirmer ◽  
...  

Abstract In genome-wide screens we studied CA/C1 peptidases of malaria-causing plasmodia and their hosts (man and mouse). For Plasmodium falciparum and P. berghei, several new CA/C1 peptidase genes encoding proteases of the L- and B-family with specific promoter modules were identified. In addition, two new human CA/C1 peptidase loci and one new mouse gene locus were found; otherwise, the sets of CA/C1 peptidase genes in man and mouse seem to be complete now. In each species studied there is a multitude of CA/C1 peptidases with lysosomal localization signals and partial functional overlap according to similar but subfamily-specific structures. Individual target structures in plasmodia include residues specifically different in CA/C1 peptidase subsite 2. This is of medical interest considering CA/C1 peptidase inhibition for chemotherapy in malaria, malignancies and other diseases. Promoter structures and mRNA regulation differ widely among CA/C1 peptidase subfamilies and between mammals and plasmodia. We characterized promoter modules conserved in mouse and man for the CA/C1 peptidase families B and L (with the L-like subfamily, F-like subfamily and mouse-specific J-like subfamily). RNA motif searches revealed conserved regulatory elements such as GAIT elements; plasmodial CA/C1 peptidase mRNA elements include ARE elements and mammalian mRNAs contain 15-lox DICE elements.

Author(s):  
Polina V. Kuzmitskaya ◽  
Oksana Yu. Urbanovich ◽  
Aleksandr V. Kilchevsky

Stress-associated proteins (SAPs) are the transcription factors containing the zinc-finger domains A20 and/or AN1. Genome-wide identification and characterization of an apple variety of Golden Delicious stress-associated proteins was performed, potential SAPs were found. Each of them contains, at least, one zinc-finger domain AN1. A phylogenetic tree was constructed on the basis of the amino acid sequences of apple SAP and homologues from other species (dicotyledonous cotton and monocotyledonous rice) to assess their phylogenetic relationships. The sequences ahead of the translation initiation site of SAPs genes were analyzed to discover cis-elements involved in the gene expression regulation. The analysis shows that apple SAPs are involved in a complex network of regulatory elements that controls the vitality of plant cells. It can be assumed that the expression of SAPs in apple trees occurs constantly, but if conditions of a plant growth are changed, their level increases. Regulation of the SAP expression may depend on a plant ontogenesis stage and it may vary in different tissues.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


Author(s):  
Yanrong Ji ◽  
Zhihan Zhou ◽  
Han Liu ◽  
Ramana V Davuluri

Abstract Motivation Deciphering the language of non-coding DNA is one of the fundamental problems in genome research. Gene regulatory code is highly complex due to the existence of polysemy and distant semantic relationship, which previous informatics methods often fail to capture especially in data-scarce scenarios. Results To address this challenge, we developed a novel pre-trained bidirectional encoder representation, named DNABERT, to capture global and transferrable understanding of genomic DNA sequences based on up and downstream nucleotide contexts. We compared DNABERT to the most widely used programs for genome-wide regulatory elements prediction and demonstrate its ease of use, accuracy and efficiency. We show that the single pre-trained transformers model can simultaneously achieve state-of-the-art performance on prediction of promoters, splice sites and transcription factor binding sites, after easy fine-tuning using small task-specific labeled data. Further, DNABERT enables direct visualization of nucleotide-level importance and semantic relationship within input sequences for better interpretability and accurate identification of conserved sequence motifs and functional genetic variant candidates. Finally, we demonstrate that pre-trained DNABERT with human genome can even be readily applied to other organisms with exceptional performance. We anticipate that the pre-trained DNABERT model can be fined tuned to many other sequence analyses tasks. Availability and implementation The source code, pretrained and finetuned model for DNABERT are available at GitHub (https://github.com/jerryji1993/DNABERT). Supplementary information Supplementary data are available at Bioinformatics online.


Lab Animal ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 17-17
Author(s):  
Alexandra Le Bras

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2547
Author(s):  
Keunsoo Kang ◽  
Yoonjung Choi ◽  
Hyeonjin Moon ◽  
Chaelin You ◽  
Minjin Seo ◽  
...  

RAD51 is a recombinase that plays a pivotal role in homologous recombination. Although the role of RAD51 in homologous recombination has been extensively studied, it is unclear whether RAD51 can be involved in gene regulation as a co-factor. In this study, we found evidence that RAD51 may contribute to the regulation of genes involved in the autophagy pathway with E-box proteins such as USF1, USF2, and/or MITF in GM12878, HepG2, K562, and MCF-7 cell lines. The canonical USF binding motif (CACGTG) was significantly identified at RAD51-bound cis-regulatory elements in all four cell lines. In addition, genome-wide USF1, USF2, and/or MITF-binding regions significantly coincided with the RAD51-associated cis-regulatory elements in the same cell line. Interestingly, the promoters of genes associated with the autophagy pathway, such as ATG3 and ATG5, were significantly occupied by RAD51 and regulated by RAD51 in HepG2 and MCF-7 cell lines. Taken together, these results unveiled a novel role of RAD51 and provided evidence that RAD51-associated cis-regulatory elements could possibly be involved in regulating autophagy-related genes with E-box binding proteins.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruifeng Cui ◽  
Xiaoge Wang ◽  
Waqar Afzal Malik ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
...  

Abstract Background The Raffinose synthetase (RAFS) genes superfamily is critical for the synthesis of raffinose, which accumulates in plant leaves under abiotic stress. However, it remains unclear whether RAFS contributes to resistance to abiotic stress in plants, specifically in the Gossypium species. Results In this study, we identified 74 RAFS genes from G. hirsutum, G. barbadense, G. arboreum and G. raimondii by using a series of bioinformatic methods. Phylogenetic analysis showed that the RAFS gene family in the four Gossypium species could be divided into four major clades; the relatively uniform distribution of the gene number in each species ranged from 12 to 25 based on species ploidy, most likely resulting from an ancient whole-genome polyploidization. Gene motif analysis showed that the RAFS gene structure was relatively conservative. Promoter analysis for cis-regulatory elements showed that some RAFS genes might be regulated by gibberellins and abscisic acid, which might influence their expression levels. Moreover, we further examined the functions of RAFS under cold, heat, salt and drought stress conditions, based on the expression profile and co-expression network of RAFS genes in Gossypium species. Transcriptome analysis suggested that RAFS genes in clade III are highly expressed in organs such as seed, root, cotyledon, ovule and fiber, and under abiotic stress in particular, indicating the involvement of genes belonging to clade III in resistance to abiotic stress. Gene co-expressed network analysis showed that GhRFS2A-GhRFS6A, GhRFS6D, GhRFS7D and GhRFS8A-GhRFS11A were key genes, with high expression levels under salt, drought, cold and heat stress. Conclusion The findings may provide insights into the evolutionary relationships and expression patterns of RAFS genes in Gossypium species and a theoretical basis for the identification of stress resistance materials in cotton.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Kai Zhao ◽  
Lin Liu ◽  
...  

Abstract Background The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. Results On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. Conclusion Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yifat Ofir-Birin ◽  
Hila Ben Ami Pilo ◽  
Abel Cruz Camacho ◽  
Ariel Rudik ◽  
Anna Rivkin ◽  
...  

AbstractPathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf ‘decision-sensing-system’ controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3’UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1007
Author(s):  
Divya Kattupalli ◽  
Asha Sreenivasan ◽  
Eppurathu Vasudevan Soniya

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


Sign in / Sign up

Export Citation Format

Share Document