scholarly journals Yttrium doped phosphate-based glasses: structural and degradation analyses

2020 ◽  
Vol 6 (1) ◽  
pp. 34-49
Author(s):  
Abul Arafat ◽  
Sabrin A. Samad ◽  
Jeremy J. Titman ◽  
Andrew L. Lewis ◽  
Emma R. Barney ◽  
...  

AbstractThis study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zinia Nasreen ◽  
Mubarak A. Khan ◽  
A. I. Mustafa

The mechanical, thermal, swelling, and release properties of chitosan-gelatin (CG) films have been investigated in order to verify the influence of UV and gamma radiation on the stability of the films. Thin films of chitosan and gelatin (1 : 3, w/w) that were radiated with 100 krad of gamma dose showed the best performance and the TS values reached 25, 45, and 49 MPa, respectively, for chitosan, gelatin, and blend. The corresponding highest TS values were 23, 42, and 45 MPa, respectively, for 10 passes of UV radiation. The effect of radiation over gelatin, chitosan, and CG blend caused modification in the arrangement of molecules in the crystal lattice that is significant by XRD analysis. Surfaces of the films were also investigated by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) studies further revealed structural changes of the films. These changes were attributed to understanding the behavior of the irradiated chitosan, gelatin, and CG blend on application of thermal energy using DSC and TGA studies, water uptake of the films in aqueous medium, and soil degradation properties to observe the best possibility for its application.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Su-Yeon Choi ◽  
Bong-Ki Ryu

75V2O5-10P2O5-15B2O3ternary-system glasses were prepared and nanocrystallized to examine the catalytic effect and the variations in their structural and electrical properties. These glasses were annealed in a graphite mold above the glass transition temperature for 2 h and heat-treated at the crystallization temperature for 1, 3, and 5 h. Fourier transform infrared spectroscopy (FTIR) was used to analyze the structural changes in the B-O bonds after nanocrystallization, while X-ray photoelectron spectroscopy (XPS) analysis showed a decrease in V5+and an increase in V4+. X-ray diffraction (XRD) analysis of the structure array (BO3+ V2O5  ↔BO4+ 2VO2) verified these inferred changes. Structural changes induced by the heat treatment were confirmed by analyzing the molecular volume determined from the sample density. Conductivity and catalytic effects were discussed based on the migration of vanadate ions with different valence states due to the increase in VO2nanocrystallinity at 275°C. Both conductance and the catalytic effect were higher after nanocrystallization at 275°C for 1 h compared to the annealed sample. Furthermore, compared to the sample heat-treated for 1 h, the conductance and catalytic effect were increased and decreased, respectively, for samples nanocrystallized at 275°C for 3 and 5 h.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 403
Author(s):  
Yan Zhang ◽  
Qian Li ◽  
Xiaoliang Liu

Arsenopyrite (FeAsS) is often associated with gold, but pre-treatment is necessary prior to gold leaching, mainly due to the gold encapsulation in the matrix of FeAsS. Bio-oxidation is attractive and promising, largely due to its simplicity, low cost and environmental friendliness. A critical problem that still impedes the large-scale applications of this green technology is its slow leaching kinetics. Some metal ions such as Ag+ have previously been found to expedite the bioleaching process. In this paper, the role of Ag+ in the arsenopyrite bioleaching by Acidithiobacillus ferrooxidans was investigated in detail by bioleaching experiments and a series of analyses including thermodynamics, X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Experimental results suggested that addition of 5 mg/L Ag+ to the leaching system could significantly improve the final As leaching efficiency from 30.4% to 47.8% and shorten the bioleaching period from 19 days to 15 days. Thermodynamic analysis indicates that Ag+ destabilises As2S2, As2S3 and S0 via forming Ag2S, which is confirmed by the XRD analysis on the phase transformation during bioleaching. SEM and XPS analyses further showed that Ag+ removed the passivating film consisting mainly of As2S2, As2S3 and S0 because Ag2S formed on the arsenopyrite surface from the start bioleaching of 36 h. In the presence of Fe3+, Ag2S could easily be dissolved to Ag+ again, likely leading to the establishment of the Ag+/Ag2S cycle. The bacteria utilised the two synergistic cycles of Fe3+/Fe2+ and Ag+/Ag2S to catalyse the bioleaching of arsenopyrite.


2006 ◽  
pp. 20-37 ◽  
Author(s):  
M. Ershov

The economic growth, which is underway in Russia, raises new questions to be addressed. How to improve the quality of growth, increasing the role of new competitive sectors and transforming them into the driving force of growth? How can progressive structural changes be implemented without hampering the rate of growth in general? What are the main external and internal risks, which may undermine positive trends of development? The author looks upon financial, monetary and foreign exchange aspects of the problem and comes up with some suggestions on how to make growth more competitive and sustainable.


2019 ◽  
Vol 12 (4) ◽  
pp. 311-323 ◽  
Author(s):  
Salvatore Benvenga ◽  
Antonio Micali ◽  
Giovanni Pallio ◽  
Roberto Vita ◽  
Consuelo Malta ◽  
...  

Background: Cadmium (Cd) impairs gametogenesis and damages the blood-testis barrier. Objective: As the primary mechanism of Cd-induced damage is oxidative stress, the effects of two natural antioxidants, myo-inositol (MI) and seleno-L-methionine (Se), were evaluated in mice testes. Methods: Eighty-four male C57 BL/6J mice were divided into twelve groups: 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); Se (0.2 mg/kg/day per os); Se (0.4 mg/kg/day per os); MI (360 mg/kg/day per os); MI plus Se (0.2 mg/kg/day); MI plus Se (0.4 mg/kg/day); CdCl2 (2 mg/kg/day i.p.) plus vehicle; CdCl2 plus MI; CdCl2 plus Se (0.2 mg/kg/day); CdCl2 plus Se (0.4 mg/kg/day); CdCl2 plus MI plus Se (0.2 mg/kg/day); and CdCl2 plus MI plus Se (0.4 mg/kg/day). After 14 days, testes were processed for biochemical, structural and immunohistochemical analyses. Results: CdCl2 increased iNOS and TNF-α expression and Malondialdehyde (MDA) levels, lowered glutathione (GSH) and testosterone, induced testicular lesions, and almost eliminated claudin-11 immunoreactivity. Se administration at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression, maintained GSH, MDA and testosterone levels, structural changes and low claudin-11 immunoreactivity. MI alone or associated with Se at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression and MDA levels, increased GSH and testosterone levels, ameliorated structural organization and increased claudin-11 patches number. Conclusion: We demonstrated a protective effect of MI, a minor role of Se and an evident positive role of the association between MI and Se on Cd-induced damages of the testis. MI alone or associated with Se might protect testes in subjects exposed to toxicants, at least to those with behavior similar to Cd.


2013 ◽  
Vol 678 ◽  
pp. 56-60 ◽  
Author(s):  
Cherukutty Ramakrishnan Minitha ◽  
Ramasamy Thangavelu Rajendrakumar

Reduced graphene oxide is an excellent candidate for various electronic devices such as high performance gas sensors. In this work Graphene oxide was prepared by oxidizing graphite to form graphite oxide. From XRD analysis the peak around 11.5o confirmed that the oxygen was intercalated into graphite. By using hydrazine hydrate, the epoxy group in graphite oxide was reduced then the solution of reduced graphite oxide (rGO) is exfoliated. Raman spectrum of rGO contains both G band (1580 cm-1), D band (1350 cm-1). The remarkable structural changes reveals that reduction of graphene oxide from the values of ID/IG ratio that increase from 0.727 (GO) to 1.414 (rGO). The exfoliated reduced graphite oxide solution is spin coated on to the SiO2/Si substrates.


2021 ◽  
Vol 9 (3) ◽  
pp. 509
Author(s):  
Amanda Carroll-Portillo ◽  
Henry C. Lin

Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xueying Yang ◽  
Fei Shao ◽  
Dong Guo ◽  
Wei Wang ◽  
Juhong Wang ◽  
...  

AbstractFTO removes the N6-methyladenosine (m6A) modification from genes and plays a critical role in cancer development. However, the mechanisms underlying the regulation of FTO and its subsequent impact on the regulation of the epitranscriptome remain to be further elucidated. Here, we demonstrate that FTO expression is downregulated and inversely correlated with poor survival of lung adenocarcinoma patients. Mechanistically, Wnt signaling induces the binding of EZH2 to β-catenin. This protein complex binds to the LEF/TCF-binding elements at the promoter region of FTO, where EZH2 enhances H3K27me3 and inhibits FTO expression. Downregulated FTO expression substantially enhances the m6A levels in the mRNAs of a large number of genes in critical pathways, particularly metabolic pathway genes, such as MYC. Enhanced m6A levels on MYC mRNA recruit YTHDF1 binding, which promotes MYC mRNA translation and a subsequent increase in glycolysis and proliferation of tumor cells and tumorigenesis. Our findings uncovered a critical mechanism of epitranscriptome regulation by Wnt/β-catenin-mediated FTO downregulation and underscored the role of m6A modifications of MYC mRNA in regulating tumor cell glycolysis and growth.


Sign in / Sign up

Export Citation Format

Share Document