scholarly journals Role of leptin in female reproduction

Author(s):  
Antonio Pérez-Pérez ◽  
Flora Sánchez-Jiménez ◽  
Julieta Maymó ◽  
José L. Dueñas ◽  
Cecilia Varone ◽  
...  

AbstractReproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.

2018 ◽  
Vol 98 (4) ◽  
pp. 2349-2380 ◽  
Author(s):  
Jennifer W. Hill ◽  
Carol F. Elias

A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weiwei Zou ◽  
Dongmei Ji ◽  
Zhiguo Zhang ◽  
Li Yang ◽  
Yunxia Cao

Mitochondrial dynamics (fission and fusion) are essential physiological processes for mitochondrial metabolic function, mitochondrial redistribution, and mitochondrial quality control. Various proteins are involved in regulating mitochondrial dynamics. Aberrant expression of these proteins interferes with mitochondrial dynamics and induces a range of diseases. Multiple therapeutic approaches have been developed to treat the related diseases in recent years, but their curative effects are limited. Meanwhile, the role of mitochondrial dynamics in female reproductive function has attracted progressively more attention, including oocyte development and maturation, fertilization, and embryonic development. Here, we reviewed the significance of mitochondrial dynamics, proteins involved in mitochondrial dynamics, and disorders resulting from primary mitochondrial dynamic dysfunction. We summarized the latest therapeutic approaches of hereditary mitochondrial fusion–fission abnormalities and reviewed the recent advances in female reproductive mitochondrial dynamics.


Reproduction ◽  
2018 ◽  
Author(s):  
Susana B Rulli ◽  
María Julia Cambiasso ◽  
Laura D Ratner

In mammals, the reproductive function is controlled by the hypothalamic-pituitary-gonadal axis. During development, mechanisms mediated by gonadal steroids exert an imprinting at the hypothalamic-pituitary level, by establishing sexual differences in the circuits that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/neonatal stage. This process is essential for the masculinization of the reproductive tract, genitals and brain. The conversion of androgens to estrogens in the brain is crucial for the male sexual differentiation and behavior. Conversely, feminization of the brain occurs in the absence of high levels of gonadal steroids during the perinatal period in females. Potential genetic contribution to the differentiation of brain cells through direct effects of genes located on sex chromosomes is also relevant. In this review, we will focus on the phenotypic alterations that occur on the hypothalamic-pituitary-gonadal axis of transgenic mice with persistently elevated expression of the human chorionic gonadotropin hormone (hCG). Excess of endogenously synthesized gonadal steroids due to a constant hCG stimulation is able to disrupt the developmental programming of the hypothalamic-pituitary axis in both transgenic males and females. Locally produced estrogens by the hypothalamic aromatase might play a key role in the phenotype of these mice. The “four core genotypes” mouse model demonstrated a potential influence of sex chromosome genes in brain masculinization before critical periods of sex differentiation. Thus, hormonal and genetic factors interact to regulate the local production of the neurosteroids necessary for the programming of the male and female reproductive function.


2015 ◽  
Vol 78 (3) ◽  
Author(s):  
Teresa Strisciuglio ◽  
Gennaro Galasso ◽  
Dario Leosco ◽  
Roberta De Rosa ◽  
Giuseppe Di Gioia ◽  
...  

Adipose tissue, besides being an important energetic storage, is also a source of cytokines and hormones which act in a paracrine, autocrine and especially endocrine manner, influencing the cardiometabolic axis. Adipokines are a group of mediators with pleiotropic function, that are involved in many physiological processes, so that a disregulation in their secretion can lead to multiple pathological conditions. In this review our aim was to clarify the role of adipokines in the pathogenesis of atherosclerosis, especially in coronary artery disease, and based on current scientific evidence, to analyze the therapeutic and behavioral strategies that are so far available.


2000 ◽  
Vol 88 (3) ◽  
pp. 881-887 ◽  
Author(s):  
Gale B. Carey

This study examined the influence of energy expenditure and energy intake on cellular mechanisms regulating adipose tissue metabolism. 1 Twenty-four swine were assigned to restricted-fed sedentary, restricted-fed exercise-trained, full-fed sedentary, or full-fed exercise-trained groups. After 3 mo of treatment, adipocytes were isolated and adipocyte size, adenosine A1 receptor characteristics, and lipolytic sensitivity were measured. Swine were infused with epinephrine during which adipose tissue extracellular adenosine, plasma fatty acids, and plasma glycerol were measured. Results revealed that adipocytes isolated from restricted-fed exercised swine had a smaller diameter, a lower number of A1 receptors, and a greater sensitivity to lipolytic stimulation, compared with adipocytes from full-fed exercised swine. Extracellular adenosine levels were transiently increased on infusion of epinephrine in adipose tissue of restricted-fed exercised but not full-fed exercised swine. These results suggest a role for adenosine in explaining the discrepancy between in vitro and in vivo lipolysis findings and underscore the notion that excess energy intake dampens the lipolytic sensitivity of adipocytes to β-agonists and adenosine, even if accompanied by exercise training.


2018 ◽  
Vol 8 (9) ◽  
pp. 163 ◽  
Author(s):  
Caroline Gurvich ◽  
Kate Hoy ◽  
Natalie Thomas ◽  
Jayashri Kulkarni

Hormones of the hypothalamic-pituitary-gonadal (HPG) axis that regulate reproductive function have multiple effects on the development, maintenance and function of the brain. Sex differences in cognitive functioning have been reported in both health and disease, which may be partly attributed to sex hormones. The aim of the current paper was to provide a theoretical review of how sex hormones influence cognitive functioning across the lifespan as well as provide an overview of the literature on sex differences and the role of sex hormones in cognitive decline, specifically in relation to Alzheimer’s disease (AD). A summary of current hormone and sex-based interventions for enhancing cognitive functioning and/or reducing the risk of Alzheimer’s disease is also provided.


1993 ◽  
Vol 264 (6) ◽  
pp. C1367-C1387 ◽  
Author(s):  
M. P. Blaustein

Ouabain is a well-known compound but a newly discovered adrenal cortical hormone that plays a role in cell Na+ regulation and in whole body salt and water balance. Ouabain may also be a paracrine hormone and may be secreted by some central nervous system neurons as well as by other types of cells. This article focuses on the cellular mechanisms that underlie the physiological (and pathophysiological) effects of ouabain. Ouabain directly inhibits the plasmalemmal Na+ pump in a variety of cell types. Low ouabain concentrations cause, in the steady state, a modest rise in the cytosolic Na+ concentration but only a minimal decline in membrane potential. All Na+ gradient-dependent processes may thereby be affected, albeit to only a small extent. Most important, however, is the secondary redistribution of Ca2+, mediated by Na(+)-Ca2+ exchange, that should slightly increase the cytosolic free Ca2+ concentration ([Ca2+]cyt). As a result of Ca2+ sequestration in intracellular stores [the endoplasmic and/or sarcoplasmic reticulum (ER/SR)], however, a new steady state is achieved with a slightly increased [Ca2+]cyt but a substantially augmented Ca2+ store; thus the ER/SR effectively acts as a Ca2+ amplifier. This extra stored Ca2+ is then available for mobilization whenever the cells are activated. Cytosolic Ca2+ is a key signaling mechanism in virtually all cells: it controls numerous physiological processes such as contraction, secretion, and excitability. Thus ouabain may modulate cell responsiveness via its influence on ER/SR Ca2+ stores. With these principles in mind, we examine evidence that endogenous ouabain may play a role in numerous physiological and pathophysiological processes associated with altered fluid and electrolyte metabolism and deviations from the normal blood pressure-blood volume relationship. We discuss the possible participation of ouabain in the regulation of vascular tone and then consider the putative role of ouabain in several forms of hypertension, congestive heart failure, thyroid and adrenocortical dysfunction, and diabetes mellitus, as well as in the adaptation to high altitude.


2013 ◽  
Vol 110 (09) ◽  
pp. 469-475 ◽  
Author(s):  
Åke Lundwall

SummaryThe human kallikrein locus consists of KLK1, the gene of major tissue kallikrein, and 14 genes of kallikrein-related peptidases (KLKs) located in tandem on chromosome 19q13.3-13.4. In this review, based on information retrieved from the literature or extracted from genome databases, it is hypothesised that the kallikrein locus is unique to mammals. The majority of genes are highly conserved, as demonstrated by the identification of 11 KLK genes in the opossum, a metatherian species. In contrast, a sublocus, encompassing KLK1-4, has gone through major transformations that have generated new genes, which in most cases are closely related to KLK1. In the primate lineage, this process created KLK3, the gene of the prostate cancer marker, prostate-specific antigen (PSA), whereas in the murine lineage it gave rise to 13 genes unique to the mouse and nine unique to the rat. The KLK proteases are effector molecules that emerged early in mammalian evolution and their importance in skin homeostasis and male reproductive function is undisputed and there are also accumulating evidence for a role of KLK proteases in the development of the brain. It is speculated that the KLK gene family arose as part of the process that generated distinguishing mammalian features, like skin with hair and sweat glands, and specialised anatomical attributes of the brain and the reproductive tract.


Sign in / Sign up

Export Citation Format

Share Document