scholarly journals Spatial Sensitivity of ECG Electrode Placement

2021 ◽  
Vol 7 (2) ◽  
pp. 151-154
Author(s):  
Andra Oltmann ◽  
Roman Kusche ◽  
Philipp Rostalski

Abstract The electrocardiogram (ECG) is a well-known technique used to diagnose cardiac diseases. To acquire the spatial signal characteristics from the thorax, multiple electrodes are commonly used. Displacements of electrodes affect the signal morphologies and can lead to incorrect diagnoses. For quantitative analysis of these effects we propose the usage of a numerical computer simulation. In order to create a realistic representation of the human thorax including the heart and lung a three-dimensional model with a simplified geometry is used. The electrical excitation of the heart is modelled on a cellular level via the bidomain approach. To numerically solve the differential equations, describing the signal propagation within the body, we use the finite element method in COMSOL Multiphysics®. The spatial gradients of the simulated body potentials are calculated to determine placement sensitivity maps. The simulated results show that the sensitivity is different for each considered point in time of each ECG wave. In general, the impact of displacement is increased as an electrode is more closely located to the signal source. However, in some specific regions associated with differential ECG leads the placement sensitivity distribution deviates from this simple circular pattern. The results provide useful information to enhance the understanding of placed specific effects on classical ECG features. By additional consideration of patient-specific characteristics in the future, the used model has the ability to investigate additional body-related aspects such as geometrical body shape or composition of various tissue types.

Author(s):  
Tania K. Morimoto ◽  
Michael H. Hsieh ◽  
Allison M. Okamura

Robot-guided sheaths consisting of pre-curved tubes and steerable needles are proposed to provide surgical access to locations deep within the body. In comparison to current minimally invasive surgical robotic instruments, these sheaths are thinner, can move along more highly curved paths, and are potentially less expensive. This paper presents the patient-specific design of the pre-curved tube portion of a robot-guided sheath for access to a kidney stone; such a device could be used for delivery of an endoscope to fragment and remove the stone in a pediatric patient. First, feasible two-dimensional paths were determined considering workspace limitations, including avoidance of the ribs and lung, and minimizing collateral damage to surrounding tissue by leveraging the curvatures of the sheaths. Second, building on prior work in concentric-tube robot mechanics, the mechanical interaction of a two-element sheath was modeled and the resulting kinematics was demonstrated to achieve a feasible path in simulation. In addition, as a first step toward three-dimensional planning, patient-specific CT data was used to reconstruct a three-dimensional model of the area of interest.


2011 ◽  
Vol 346 ◽  
pp. 222-227
Author(s):  
Sheng Zhu ◽  
Feng Liang Yin ◽  
Jian Liu ◽  
Yuan Yuan Liang

A three-dimensional model was built to study a molten metal droplet impact on an edge of the substrate in droplet deposition manufacturing process for the first time. The whole calculation domain, including the substrate, was described using same fluid conservation equations, which is to say that the remolding and solidification of substrate was considered also. Droplet free surface was tracked by volume-of-fluid (VOF) algorithm. The effect of surface tension on the droplet was taken into consideration by means of considering surface tension to be a component of the body force. The simulated results show that the droplet in liquid phase can keep suspending on the substrate at a role of surface tension. A too high impact velocity would make parts of droplet splash away the substrate which is not allowed in manufacturing process. The offset between edge of droplet and side edge of substrate influences dramatically the impact of the droplet.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


2018 ◽  
Vol 41 ◽  
pp. 04004 ◽  
Author(s):  
Ahmad Saifudin Mutaqi

In most Schools of Architecture, Architecture Studio is at the core of the architectural learning process. In the process, students are trained to have the skills of architectonic spaces design based on the study of the site, its function, and its aesthetics. Students are also trained to have awareness and understanding about the impact of their design on the surrounding environment, both physically and socially. Also, students are trained to present their designs in various forms such as visual graphics, verbal narratives, and three dimensional model animations. Indonesian Association of School of Architecture (APTARI Asosiasi Perguruan Tinggi Arsitektur Indonesia) and Indonesian Institute of Architects (IAI - Ikatan Arsitek Indonesia) has formulated an education Standards, Curriculum, and Achievements of Architect Professional Program to be referred by Ministry of Research, Technology, and Higher Education (KEMENRISTEKDIKTI – Kementerian Riset, Teknologi, danPerguruanTinggi) as the guidance for the implementation of Architect Professional Program (PPA - Pendidikan Profesi Arsitek) in Indonesia. One of the eight recommendations is the PPA Content Standard which contains the learning for the achievement of IAI Architect Competencies through the recommended study materials. However, the recommended study materials did not indicate the activity of the Architecture Studio learning model (Final Report of APTARI Part II and IAI). Will architect’s competence be achieved if the learning process withoutarchitectural studio learning model? The formulation of the curriculum that is developed independently by the IAI recommends the learning of Architectural Studio as Professional Studio. The size of the SKS is large enough to enable someone who follows the lesson to intensively gain experience in designing the building as a real architectural work. This Architecture Studio learning model is interpreted by PPAr organizer universities with various forms, among others: (1) apprenticeship of architects; (2) supervised studios; And (3) project simulation studio. From various models of Architecture learning model mentioned above, all aim to achieve 13 Architect Competence as formulated by IAI. Which model is effective in learning the Architectural Studio mentioned above? This exploratory study would like to compare the three forms of Architecture Studio learning model to see how much the achievement of the targeted competencies by measuring the success of Competency Test activities still use the standards implemented by LPJK by involving assessors from IAI. The results of the comparison will show the compatibility of the implementation of the Architecture Studio learningmodel what is considered effective. These findings will certainly benefit the development of future PPAr implementation, especially if the Architecture Studio model can be commensurate with the studios developed by the School of Architecture in various countries, at least in the region of 21 member countries ARCASIA.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shoushuo Wang ◽  
Zhigang Du ◽  
Fangtong Jiao ◽  
Libo Yang ◽  
Yudan Ni

This study aims to investigate the impact of the urban undersea tunnel longitudinal slope on the visual characteristics of drivers. 20 drivers were enrolled to conduct the real vehicle test of the urban undersea tunnel. First, the data of average fixation time and visual lobe were collected by an eye tracker. The differential significance was tested using the one-way repeated measures analysis of variance (ANOVA). Then, the difference between the up-and-down slope (direction) factor and the longitudinal slope (percent) factor on the two indexes were analyzed using the two-way repeated measures ANOVA. Second, by constructing a Lorentz model, the impact of the longitudinal slope on the average fixation time and the visual lobe were analyzed. Besides, a three-dimensional model of the longitudinal slope, average fixation time, and visual lobe was quantified. The results showed that the average fixation time and visual lobe under different longitudinal slopes markedly differed when driving on the uphill and downhill sections. The average fixation time and visual lobe under two factors were markedly different. Moreover, with an increase in the longitudinal slope, the average fixation time exhibited a trend of increasing first then decreasing; the visual lobe exhibited a trend of decreasing first and then increasing. The average fixation time reached the minimum and maximum value when the slope was 2.15% and 4.0%, whereas the visual lobe reached the maximum and minimum value when the slope was 2.88% and 4.0%. Overall, the longitudinal slope exerted a great impact on the visual load of the driver.


Author(s):  
Y Guo ◽  
J P Hu ◽  
L Y Zhang

This article treats the pile driving as multi-body dynamic contacts. By using the penalty function method and three-dimensional model of finite-element method, the dynamic process of pile driving is acquired and a method for choosing the cushion material of the hydraulic pile hammer to improve driving efficiency is proposed. The process of pile driving in the real situation of an industrial experiment is simulated. The results of stress on test point are consistent with the test point. By analysing the stress distributed along the direction of pile radius and pile axis, the rule of the stress distribution on the pile is concluded. The rule for cushion material choice is obtained by comparing the influence for the impact stress with different elastic modulus ratio of the hammer cushion to the pile and the pile cushion to the pile.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Ren ◽  
Stephen Nash ◽  
Michael Hartnett

This paper details work in assessing the capability of a hydrodynamic model to forecast surface currents and in applying data assimilation techniques to improve model forecasts. A three-dimensional model Environment Fluid Dynamics Code (EFDC) was forced with tidal boundary data and onshore wind data, and so forth. Surface current data from a high-frequency (HF) radar system in Galway Bay were used for model intercomparisons and as a source for data assimilation. The impact of bottom roughness was also investigated. Having developed a “good” water circulation model the authors sought to improve its forecasting ability through correcting wind shear stress boundary conditions. The differences in surface velocity components between HF radar measurements and model output were calculated and used to correct surface shear stresses. Moreover, data assimilation cycle lengths were examined to extend the improvements of surface current’s patterns during forecasting period, especially for north-south velocity component. The influence of data assimilation in model forecasting was assessed using a Data Assimilation Skill Score (DASS). Positive magnitude of DASS indicated that both velocity components were considerably improved during forecasting period. Additionally, the improvements of RMSE for vector direction over domain were significant compared with the “free run.”


Sign in / Sign up

Export Citation Format

Share Document