scholarly journals Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Eleni A. Deliyanni ◽  
George Z. Kyzas ◽  
Kostas S. Triantafyllidis ◽  
Kostas A. Matis

AbstractThis work is a systematic review of the literature over the past decade of the application of activated carbon (microporous or mesoporous) as adsorbents for the removal of heavy metals, focusing especially on lead (Pb) and arsenic (As) ions from the aqueous phase. Classical examples from our lab are also given. Activated carbon is known to provide a high surface area for adsorption. Generally, surface modification is typically required, such as oxidation, treatment with ammonia or even impregnation with ferric ion, etc. and the adsorbent material may originate from various sources. The pristine materials, after modification and those after batch-wise adsorption, were characterized by available techniques (BET analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal analyses, X-ray photoelectron spectroscopy). Adsorption isotherms, thermodynamics and kinetics of the process are also discussed. Selected studies from the literature are examined in comparison with other adsorbents. The role of chemistry in the metals adsorption/removal was investigated.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


2016 ◽  
Vol 35 (6) ◽  
pp. 535-541 ◽  
Author(s):  
Hongying Xia ◽  
Jian Wu ◽  
Chandrasekar Srinivasakannan ◽  
Jinhui Peng ◽  
Libo Zhang

AbstractThe present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.


2012 ◽  
Vol 66 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Ş. Gül ◽  
O. Eren ◽  
Ş. Kır ◽  
Y. Önal

The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption. The highest BET surface area carbon (1,275 m2/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.


1992 ◽  
Vol 25 (1) ◽  
pp. 153-160 ◽  
Author(s):  
E. Diamadopoulos ◽  
P. Samaras ◽  
G. P. Sakellaropoulos

The objectives of this work were to relate the activated carbon properties to its adsorptive capacity. The activated carbon needed was produced in the lab from Greek lignite coal. Subsequently, adsorption studies were performed in order to evaluate the efficiency of the various activated carbons to remove toxic substances from water. Two organic substances were used. These were phenol and fulvic acid. Additionally, the adsorption of arsenic (V) was, also, investigated. It was found that the adsorptive capacity of the activated carbons depended primarily on the ash content and the compound. The capacity of the carbon to remove phenol, expressed as mg of phenol removed per g of activated carbon (carbon loading), decreased linearly as the amount of ash in the activated carbon increased. Ash-free activated carbons could adsorb 4 times as much phenol as the activated carbons with a high ash content. On the other hand, fulvic acid and arsenic adsorbed poorly on the ash-free activated carbons. Even for the high surface area activated carbons (over 1000 m2/g), the quantity of fulvic acid or arsenic adsorbed was significantly less than that exhibited by the high ash activated carbons (maximum surface area measured hardly exceeded 300 m2/g). As the amount of ash in the carbon increased, the carbon loading increased as well, up to a certain level, beyond which the amount of ash played no significant role. The beneficial role of ash was explained by the ability of the fulvic acid and arsenic to interact with metal oxides and metal ions, which constitute a significant fraction of the ash.


2020 ◽  
Vol 11 (3) ◽  
pp. 10265-10277

Activated carbons derived from rice husk pyrolysis (biochar) were prepared by chemical activation at different biochar/K2CO3 proportions in order to assess its capacity as adsorbent. The activated material was characterized by X-ray diffraction (DRX), Raman spectroscopy, scanning electron microscopy (SEM), the Brunauer, Emmet, and Teller (BET) method. The Barret, Joyner, and Halenda (BJH) method and functional density theory (DFT), presenting interesting texture properties, such as high surface area (BET 1850 m2 g-1) and microporosity, which allow its use as a sorbent phase in solid-phase extraction (SPE) of the main constituents of the aqueous pyrolysis phase. It was demonstrated that the activated carbon (RH-AC) adsorbs different compounds present in from rice husk pyrolysis wastewater through quantitative analysis by high-performance liquid chromatography with a diode-array detector (HPLC-DAD), presenting good linearity (R2 > 0.996) at 280 nm.


2014 ◽  
Vol 1644 ◽  
Author(s):  
Paul R. Armstrong ◽  
Zachary J. Morchesky ◽  
Dustin T. Hess ◽  
Kofi W. Adu ◽  
David. K. Essumang ◽  
...  

ABSTRACTWe present preliminary results on a processing protocol by chemical activation that transforms organic waste product such as coconut husk into high surface area activated carbon. Dried raw materials of the coconut husk were carbonized anaerobically into char. The char was impregnated with KOH of different ratios and were activated at 800°C and 900°C. The transmission electron microscope was used to acquire structural and morphological information of the activated carbon, and the surface area and porosity analysis were performed using Micromeritics ASAP 2020 analyzer. The activated carbons show both micropores and mesopores with specific surface area as high as 2900m2/g.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4658 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Anita Cymann-Sachajdak ◽  
Paweł Kazimierski ◽  
Marek Klein ◽  
Justyna Łuczak ◽  
...  

In this work, we present the preparation and characterization of biomass-derived activated carbon (AC) in view of its application as electrode material for electrochemical capacitors. Porous carbons are prepared by pyrolysis of chestnut seeds and subsequent activation of the obtained biochar. We investigate here two activation methods, namely, physical by CO2 and chemical using KOH. Morphology, structure and specific surface area (SSA) of synthesized activated carbons are investigated by Brunauer-Emmett-Teller (BET) technique and scanning electron microscopy (SEM). Electrochemical studies show a clear dependence between the activation method (influencing porosity and SSA of AC) and electric capacitance values as well as rate capability of investigated electrodes. It is shown that well-developed porosity and high surface area, achieved by the chemical activation process, result in outstanding electrochemical performance of the chestnut-derived porous carbons.


2018 ◽  
Vol 37 ◽  
pp. 02002
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Abdeljalil Zouhri

Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3123
Author(s):  
Mireia Buaki-Sogó ◽  
Leire Zubizarreta ◽  
Marta García-Pellicer ◽  
Alfredo Quijano-López

Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis. The use of activated carbons from biomass origins is a step forward in the development of more sustainable processes enhancing material recycling and reuse in the frame of a circular economy. In this article, a perspective of different heterogeneous catalysts based on sustainable activated carbon from biomass origins will be analyzed focusing on their properties and catalytic performance for determined energy-related applications. In this way, the article aims to give the reader a scope of the potential of these tailor-made sustainable materials as a support in heterogeneous catalysis and future developments needed to improve catalyst performance. The selected applications are those related with H2 energy and the production of biomethane for energy through CO2 methanation.


Sign in / Sign up

Export Citation Format

Share Document