scholarly journals Analysis of the Cost of a Building’s Life Cycle in a Probabilistic Approach

2019 ◽  
Vol 9 (1) ◽  
pp. 129-133
Author(s):  
M. Rogalska ◽  
D. Szewczak

AbstractIn the article the costs of alternative roofing techniques in the life cycle of the building were calculated. The calculations were made in accordance with ISO 15686-5 standard “Buildings and constructed assets – Service life planning – Part 5: Life-cycle costing”, using normative durability periods and minimum period of annual consumption of individual building elements to determine the durability of building components. The normative periods are valid in Poland in relation to the valuation of buildings. Probabilistic costs in the life cycle of ceramic, metal and bituminous coatings were analysed. The probability density distributions were assumed: beta for pricing factors and normal for the interest rate. Calculations were carried out for the periods of 100 years of operation of coverings, taking into account the costs of replacement and utilization. As a result of the calculations, the life cycle costs of alternative coatings with probabilities from 5 to 95% were obtained.

Author(s):  
Sankara Raman ◽  
Margaret J. Rys ◽  
Eugene R. Russell

There is a wealth of information related to life-cycle costs of different sign sheeting materials and considerable information on common signposts, but there is little or no information about the life-cycle costs of different types of signposts. The primary objective of this research was to determine the best cost-effective policy, consistent with safety, for signpost materials and types used on state highways in Kansas. From the initial literature review, a matrix was constructed detailing the various materials used for signposts by each state. This was followed with a survey questionnaire to gather information on what posts other states were using for three major types of signs used in Kansas. From the data obtained from the state departments of transportation, test installations were carried out by three vendors. Life-cycle economic analysis was conducted, taking into consideration the labor, equipment, and time requirements for the initial installation and the replacement. Among the four systems compared for a single signpost, the Poz-Loc Socket System is the most cost-effective alternative in life-cycle costs, followed by the Break-Out Sign Support System, the 4″ x 4″ x 14′ wood post, and the Telespar anchor-driven unit. Among the three systems compared for a double signpost, the Poz-Loc Slipbase System is the most cost-effective alternative, followed by the Telespar Slipbase System, and the double 4″ x 6″ x 16′ wood post. The present worth analysis and sensitivity analysis, conducted according to varying the interest rate, did not have any significant effect in changing the cost-effective alternative.


Author(s):  
Greg B. Bruening ◽  
James R. Snyder ◽  
Raymond E. Fredette

This paper evaluates the potential impact of utilizing advanced engine technology for a limited life, combat capable, unmanned air vehicle (UAV) application. A study was conducted to define payoffs in terms of mission capability and system level life cycle costs (LCC) associated with implementing three different engine development approaches into a combat capable UAV design. The three different approaches considered were: a new, advanced technology engine; an existing (off-the-shelf) engine; and a derivative of an existing engine with limited technology insertion. A detailed vehicle configuration design was developed to conduct this assessment, including a low observable (LO), highly integrated engine/airframe layout for survivability and mission adaptable considerations. The vehicle is designed with multi-role mission capability such as suppression of enemy air defense (SEAD), close air support (CAS), and battlefield air interdiction (BAI). A system level performance comparison is assessed with the three different engine approaches, specifically for the SEAD-type mission. For the cost analysis, the multi-role mission capability is reflected in the overall assumptions such as in the number of aircraft needed to meet the mission requirements. A system level assessment such as in this study is essential in determining whether the additional costs associated with the development of a new, advanced engine is worth the investment. The results of this study suggest that advanced engine technology insertion can provide significant benefits in terms of mission range capability, vehicle weight/size, and overall life cycle costs versus an existing engine.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3446 ◽  
Author(s):  
Ivan Mareev ◽  
Dirk Sauer

The overhead catenary truck is an interesting technology for long-haul transportation with heavy-duty trucks because it can combine the advantage of energy supply via catenary while driving and the flexibility of a battery truck on routes without catenary using the traction battery. This study investigates the energy consumptions of overhead catenary trucks on German highways and considers different configurations for the traction battery and catenary power system. Afterwards the life cycle costs of overhead catenary trucks are calculated for a specified long-haul transportation scenario and the results are compared to battery electric truck and diesel truck using the findings of a previous study by the authors. The energy consumption of the considered overhead catenary trucks is approximately equal to that of a battery electric truck but only about a half of the equivalent energy consumption of a conventional diesel truck. According to the cost assumptions in this study, the total life cycle costs of overhead catenary trucks can be in the range of the conventional diesel truck, showing the competitiveness of this alternative truck technology.


2013 ◽  
Vol 315 ◽  
pp. 423-427
Author(s):  
Halim Razali ◽  
Kamaruzzaman Sopian ◽  
Ali Sohif Mat

Estimation of the life cycle cost (LCC) for a hydrogen internal combustion engine (H2ICE) that uses hydrogen as an alternative fuel by forecasting a financial investment plan for a period of five years (n = 5). This is influenced by the interest rate of 10% (i = 10). The effect of Annual Operating Cost and salvage value in the LCC for H2ICE would give impact on the cost of investment and economic growth in the long term. The result shows the brake specific fuel consumption to achieve 14% savings for grams per kilowatt hour for the engine (G + H2) compared to the engine (G). The operation of H2ICE in the first year would be increased by 22%, the reason is due to the cost of equipment, maintenance and purchase of new components. However, the percentage of operation cost for the following five to ten year of Present worth (PW) is reduced to 0.36% in the fourth year (n = 4) within the interest rate of 10%. The return of initial investment in the capital-first cost (FC) is to occur at the beginning of the fifth year (n = 5) of H2ICE operations. The cost of savings for the next five years would become more profitable reaching 37% reduction in cost compared to conventional fuel consumption


2019 ◽  
Vol 65 (3) ◽  
pp. 101-112 ◽  
Author(s):  
M. Rogalska ◽  
J. Żelazna-Pawlicka

AbstractThe paper evaluates the relationship between the selection of the probability density function and the construction price, and the price of the building's life cycle, in relation to the deterministic cost estimate in terms of the minimum, mean, and maximum. The deterministic cost estimates were made based on the minimum, mean, and maximum prices: labor rates, indirect costs, profit, and the cost of equipment and materials. The net construction prices received were given different probability density distributions based on the minimum, mean, and maximum values. Twelve kinds of probability distributions were used: triangular, normal, lognormal, beta pert, gamma, beta, exponential, Laplace, Cauchy, Gumbel, Rayleigh, and uniform. The results of calculations with the event probability from 5 to 95% were subjected to the statistical comparative analysis. The dependencies between the results of calculations were determined, for which different probability density distributions of price factors were assumed. A certain price level was assigned to specific distributions in 6 groups based on the t-test. It was shown that each of the distributions analyzed is suitable for use, however, it has consequences in the form of a final result. The lowest final price is obtained using the gamma distribution, the highest is obtained by the beta distribution, beta pert, normal, and uniform.


2019 ◽  
Vol 12 (1) ◽  
pp. 226 ◽  
Author(s):  
Edyta Plebankiewicz ◽  
Wiesław Meszek ◽  
Krzysztof Zima ◽  
Damian Wieczorek

The paper discusses issues related to life cycle costs in construction. Life cycle cost is a key element in the assessment of environmental sustainability in construction and it provides a tool for the economic evaluation of alternative sustainability options exhibiting different capital, operating costs or resource usage. The authors reviewed selected models of estimating life cycle costs in construction, drew attention to the complex mathematical models developed so far, namely those which take into account only financial risks and those which involve the possibility of the influence of other risk factors and described the main assumptions accompanying the original model for estimating the whole life costs of buildings, including: reasons for choosing theory of possibility, division and parametrization of input data. The aim of this paper is to confirm the validity of the model structure assumptions adopted by the authors by comparing the originally selected fuzzy approach to calculating life cycle costs taking into account the risk with the probabilistic approach, as well as indicating the domain in which the probabilistic approach will complement the fuzzy approach chosen by the authors. The paper presents a comparison analysis of two approaches used in the authors’ model, a fuzzy and a probabilistic approach, recommended by the ISO standard 15686-5:2008. The authors used the Oracle Crystall Ball software in their simulations.


2017 ◽  
Vol 2639 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Mehdi Akbarian ◽  
Omar Swei ◽  
Randolph Kirchain ◽  
Jeremy Gregory

Life-cycle cost analysis (LCCA) is a commonly used approach by pavement engineers to compare the economic efficiency of alternative pavement design and maintenance strategies. Over the past two decades, the pavement community has augmented the LCCA framework used in practice by explicitly accounting for uncertainty in the decision-making process and incorporating life-cycle costs not only to the agency but also to the users of a facility. This study represents another step toward improving the LCCA process by focusing on methods to characterize the cost of relevant pay items for an LCCA as well as integrating costs accrued to users of a facility caused by pavement–vehicle interaction (PVI) and work zone delays. The developed model was implemented in a case study to quantify the potential implication of both of these components on the outcomes of an LCCA. Results from the construction cost analysis suggest that the proposed approaches in this paper lead to high-fidelity estimates that outperform current practice. Furthermore, results from the case study indicate that PVI can be a dominant contributor to total life-cycle costs and, therefore, should be incorporated in future LCCAs.


Author(s):  
Kurt P. Thompson ◽  
B. Larry Shives ◽  
J. S. Snodgrass ◽  
C. A. Marks ◽  
R. E. Hughes

Thousands of bridges on which the U.S. transportation system depends are in need of repair or replacement. Engineers are continually looking for materials that can significantly extend the lives of these structures. The use of lightweight materials such as aluminum could often avoid the cost of the replacement of the sound foundations and steel girders of bridges listed as structurally deficient. However, bridge engineers have not considered aluminum for use as a bridge material because of a lack of information on the in-service performance of existing aluminum bridges and a lack of knowledge about the metal's lower life-cycle costs compared with those of traditional materials. The reconfiguration of the Smithfield Bridge in downtown Pittsburgh from a mass transit–highway bridge to a highway-traffic bridge presented an opportunity for Reynolds Metals Company to analyze the corrosion and fatigue performance of the almost 30-year-old deck and the more than 60-year-old cross members. The results of the study indicate that aluminum is a viable material for bridge decks when it is properly designed into the application.


Author(s):  
Jannik Alexander Schneider ◽  
Iryna Mozgova ◽  
Roland Lachmayer

AbstractWith the spread of product-service systems as business models the life cycle costs are of increasing importance as a measurement of product cost. A key factor that drives these costs is the desired reliability of the products used to provide the service. Since the customer usually expects as uninterrupted service availability, it is imperative to achieve the the required reliability. Therefore a large variety of methods has been developed to maximize the reliability of a product. But these approaches focus on the maximization of the reliability and disregard the resulting product costs. This can lead to designs that over perform concerning their reliability requirements but also exceed their target costs. Which will result in the product-service system not being competitive in the marketplace or lowering the company's profit. This paper shows an approach on how to use markov chains to enable a quick comparison of life cycle costs from different product-service system designs With this it will be possible to make better informed decisions about the costs of a system while still meeting the reliability targets.


Sign in / Sign up

Export Citation Format

Share Document