scholarly journals Effect of surface modifications on the properties of UHMWPE fibres and their composites

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 40-49
Author(s):  
Cuiyu Li ◽  
Yameng Shi ◽  
Rui Zhang ◽  
Gaopan Wang ◽  
Jingyan Jia

AbstractIn this study, ultrahigh-molecular-weight polyethylene (UHMWPE) fibres, modified by acetic acid, sulfuric acid and water at a ratio of 20:25:2 for different time periods and modified UHMWPE/EP composites were prepared. The micromorphology, chemical composition, contact angle, H sample extraction, tensile properties and bending performance of the composite material of the UHMWPE fibres before and after modification were tested and analysed. The results show that, after the UHMWPE fibres were treated with the modified liquid, the surface roughness of the fibre increased, the contact angle decreased, and the surface chemical composition and species significantly changed; the mechanical properties of the composites are best when the fibres were treated for 9 min. For the same fibre content, the specific strength, specific modulus and bending load of UHMWPE composites treated for 9 min were increased by 16.7%, 82.9% and 55.3%, respectively, compared with untreated samples.

2021 ◽  
Vol 0 (2) ◽  
pp. 36-43
Author(s):  
N.V. Shadrinov ◽  
◽  
A.A. Khristoforova ◽  

The results of the study of the complex of properties of an elastomeric composite material based on nitrile butadiene rubber BNKS-18 and ultrahigh molecular weight polyethylene are presented. The effect of UHMWPE on the vulcanization characteristics of rubber compounds, the physicomechanical properties of vulcanizates before and after thermal aging in a hydrocarbon environment and air, and also on the dynamic properties before and after curing are investigated.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6065
Author(s):  
Wangxi Fan ◽  
Xiuqin Fu ◽  
Zefang Li ◽  
Junfei Ou ◽  
Zhou Yang ◽  
...  

Ultrahigh molecular weight polyethylene (UHMWPE) materials have been prevalent joint replacement materials for more than 45 years because of their excellent biocompatibility and wear resistance. In this study, functionalized activated nanocarbon (FANC) was prepared by grafting maleic anhydride polyethylene onto acid-treated activated nanocarbon. A novel porous UHMWPE composite was prepared by incorporating the appropriate amount of FANC and pore-forming agents during the hot-pressing process for medical UHMWPE powder. The experimental results showed that the best prepared porous UHMWPE/FANC exhibited appropriate tensile strength, porosity, and excellent hydrophilicity, with a contact angle of 65.9°. In vitro experiments showed that the porous UHMWPE/FANC had excellent biocompatibility, which is due to its porous structure and hydrophilicity caused by FANC. This study demonstrates the potential viability for our porous UHMWPE/FANC to be used as cartilage replacement material for biomedical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


Sign in / Sign up

Export Citation Format

Share Document