scholarly journals Basic soil properties as a factor controlling the occurrence and intensity of water repellency in rankers of the White Carpathians

2015 ◽  
Vol 57 (3) ◽  
pp. 129-137
Author(s):  
Lucia Kořenková ◽  
Martin Urík

Abstract Water repellency in soils is controlled by many different factors, basic physical and chemical properties might be considered the crucial ones. For the purpose of this study, 12 sites were selected and sampled (0–20 cm depth) in the White Carpathians. Repellency tests were conducted under laboratory conditions in triplicate using water drop penetration time (WDPT) test and the molarity of ethanol droplet (MED) test. Results of WDPT measurements showed that three samples were marked by slight to extreme water repellency. Regarding the relationship between WDPT/MED and tested soil properties, the highest value of correlation coefficient was calculated for soil organic carbon (r = 0.706; p < 0.05), suggesting there is a positive, statistically significant correlation between repellency severity and total carbon content. A negative relationship between repellency and soil reaction/silt/silt + clay contents of studied soils was found. Samples taken from the surface horizon of arable soils showed no repellency.

Soil Research ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 13 ◽  
Author(s):  
Jessica T. Heath ◽  
Chris J. Chafer ◽  
Thomas F. A. Bishop ◽  
Floris F. Van Ogtrop

Soil properties can be considerably modified as a result of wildfire. This study examined the impact of wildfire on total carbon and water repellency at two study sites, namely Cranebrook and Wentworth Falls, located 45 and 75 km west of Sydney, Australia, respectively. Within each study site, we measured soil properties at two depth intervals from five burn severity classes along 15 transects (10 sample points per transect). Samples were taken 6, 12 and 36 months after wildfire. Soil total carbon was measured using LECO combustion analysis and potential soil water repellency was determined using water drop penetration time. Two-way analysis of variance (ANOVA) was used to analyse the results, with burn severity and time as factors. Burn severity had a significant effect on both soil total carbon and water repellency at both study sites, whereas time was only significant for soil carbon at Wentworth Falls. Soil total carbon and water repellency were variable through time due to local environmental variables, such as rainfall and temperature. The relationship between soil total carbon and water repellency was strong for Cranebrook in the surface soil (r = 0.62) and lower in the subsurface soil (r = 0.41), but weaker at Wentworth Falls, with values of r = 0.22 and r = 0.15 in the surface and subsurface soils respectively.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Anna Świercz ◽  
Agnieszka Gandzel ◽  
Ilona Tomczyk-Wydrych

This study presents the influence of the cement and lime industry on the physical and chemical properties of arable soils. In spite of using modern forms of environmental protection against dust emissions, this type of industry causes unfavourable phenomenon of excessive alkalisation of soil. This process is relatively rare in Poland. However, in the Świętokrzyskie Province, it has been responsible for the largest transformation of soils in recent years. The analysis included soil samples taken from five profiles located in the vicinity of Dyckerhoff Polska Sp. z o.o. Nowiny Cement Plant. The study results obtained in 2019 were compared with those obtained in 1978 and 2005. The most attention was paid to soil pH; CaCO3 content; organic carbon and nitrogen content; concentrations of available components such as P2O5, K2O and Mg; and the saturation level of sorption complex with alkaline cations. It was found that long-term imission of pollutants caused significant changes in the basic soil properties, which remain in soils despite the evident decrease in the cement-lime dust emission. These include high pH values, excessive CaCO3 content, high soil saturation with alkaline cations and decreases in total carbon content, which were especially visible in soil humus horizons.


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1084
Author(s):  
Vittoria Giannini ◽  
Eleonora Peruzzi ◽  
Grazia Masciandaro ◽  
Serena Doni ◽  
Cristina Macci ◽  
...  

In 2013, a pilot experimental field of about 15 ha was set up within the basin of Lake Massaciuccoli (Tuscany, Italy) in order to compare different management strategies—a paludicultural system (PCS), a constructed wetland system (CWS), a nearly-natural wetland system (NWS)—for peatland restoration after almost a century of drainage-based agricultural use (CS). After five years, changes in peat soil quality were investigated from a chemical, biochemical, and ecoenzymatic perspective. The soil in CS was mainly characterized by oxidant conditions, higher content of overall microbial activity, low levels of easily available phosphorus for vegetation, and medium total carbon content ranging from 25.0% to 30.7%. In PCS, the levels of total carbon and the content of bioavailable P were higher, while the oxidant conditions were lower compared to the other systems. As expected, the soils in CWS and NWS were characterized by the most reduced conditions and by the highest levels of arylsulphatase activity. It was noteworthy that soils in the NWS systems were characterized by the highest level of nonavailable P. Outputs from ecoenzymatic activity confirmed the physico-chemical and biochemical results.


1997 ◽  
Vol 500 ◽  
Author(s):  
M. L. Pereira Da Silva ◽  
A. Romanelli Cardoso ◽  
J. J. Santiago-Aviles

ABSTRACTThis work presents the analysis performed on a SiO2 film deposited from organometallic precursors with the aim of correlating their physico-chemical properties including electrical characteristics with processing variables. The characterization tools used in this study included SEM for film homogeneity; SIMS for the determination of total carbon content; FT-MS and Raman scattering spectroscopy for surface characterization. GC-MS was used to understand the electrochemical reactions taking place while performing I-V characteristics measurements.The use of these multiple characterization techniques pointed out to deposited films with reasonable deposition characteristics but poor electrical ones. Phase segregated heterogeneity's rich in carbonatious residues influenced the degradation of the electrical characteristics.


2021 ◽  
Vol 13 (4) ◽  
pp. 1198-1205
Author(s):  
B. Karthikeyan ◽  
B. Bhakiyathu Saliha ◽  
P. Kannan ◽  
S. Vellaikumar

Biochar is considered as a possible and potential tool for soil fertility improvement, climate change mitigation and long term sink for atmospheric carbon dioxide. Soil application of biochar enhances the soil properties indirectly. A field experiment was conducted to evaluate the influence of organic manures viz., Farm Yard Manure (FYM), Vermicompost, Biochar, Biochar composite on soil properties, growth and yield of bhendi, Abelmoschus esculentus in Somayyanur soil series of Madurai district, Tamil Nadu. The experiment was laid out in randomized block design (RBD) with eleven treatments and three replications during the summer season (March – June) 2021 with the inclusion of inorganic fertilizers based on soil test crop response (STCR) based recommendation. Application of biochar composite (5 t ha-1) along with STCR based NPK (75% STCR) increased the total carbon content in soil by 0.538 %. This, in turn, increased the available nitrogen status to 295 and 244 Kg ha-1 at 40 and 70 DAS, respectively. Similarly, the available phosphorous (22.4, 19.3 Kg ha-1) and potassium (344.70, 323.70 Kg ha-1) status also showed a considerable increase with the same treatment. The yield attributes of bhendi viz., fruit length, girth, weight, dry matter production and yield recorded maximum values of 15.23 cm, 6.93 cm, 21.56 g, 11.9 t ha-1 and 25.20 t ha-1 with the combined application of biochar composite and NPK. The findings revealed that 25 % STCR based NPK could be reduced with the application of 5 t ha-1 of biochar composite, which is economically an option besides promoting soil health.


Soil Research ◽  
1998 ◽  
Vol 36 (3) ◽  
pp. 495 ◽  
Author(s):  
I. McKissock ◽  
R. J. Gilkes ◽  
R. J. Harper ◽  
D. J. Carter

In order to predict the occurrence of water repellency, which is a labile property, from field survey data obtained throughout the year, it is necessary to identify predictive relationships between water repellency and commonly measured soil properties. This paper evaluates these relationships for diverse soil assemblages. These soil assemblages include a set of reference soils from the south-west of Western Australia (an area of 250 000 km2), more intensively sampled suites of soils in several smaller soil{landscape associations within the south-west of Western Australia (≅1000 km2), soils from single farms (1-10 km2) and transects (≅0·001 km2), and single soil profiles (≅m2). The severity of water repellency was assessed by measuring water drop penetration time in seconds (WDPT) and was related to intrinsic properties of soils using log-transformed data. For the set of soils from the West Midland Sandplain the type of land use was also considered as a variable. There is a general tendency for WDPT to increase as organic matter content increases and decrease as the content of fine mineral material increases (clay, silt, very fine sand). However, there is no single soil property that is able to predict WDPT adequately. Furthermore, reliability of prediction decreases as the area of sampling increases. There appear to be no systematic differences in the capacity of organic matter from pasture or crop to induce water repellency, but increments of organic matter under bush increase water repellency at a greater rate than does organic matter from crop or pasture.


2018 ◽  
Author(s):  
Ádám Tóth ◽  
András Hoffer ◽  
Mihály Pósfai ◽  
Tibor Ajtai ◽  
Zoltán Kónya ◽  
...  

Abstract. The chemical properties of tar ball (TB) particles generated from dry distillate (wood tars) of three different wood species in the laboratory were investigated by analytical techniques that had never been used before, for their characterization. The elemental composition of TB particles from three tree species were very similar to one another and to those characteristic for atmospheric tar balls (TBs) collected from savanna fire during the SAFARI 2000 sampling campaign. The O / C and H / C molar ratios of the generated TBs were at the upper limit characteristic for soot particles. The FT-IR spectra of the generated TBs were very similar to one another as well and also showed some similarity with those of atmospheric humic-like substances (HULIS). The FT-IR measurements indicated that laboratory-generated TBs have a higher proportion of aromatic structure than HULIS and the oxygen atoms of TBs are mainly found in hydroxyl and keto functional groups. Whereas the starting materials of the TBs (wood tars) were Raman inactive in the range of 1000–1800 cm−1, the Raman spectra of TBs were dominated by two pronounced bands with intensity maxima near 1580 (G band) and 1350 cm−1 (D band), indicating the presence of sp2-hybridised carbon structures and disorder in them, respectively. In the Py-GC-MS chromatograms of the laboratory-generated TBs mostly aromatic compounds (aromatic hydrocarbons, oxygenated aromatics and heterocyclic aromatics) were identified in accordance with the results of Raman and FT-IR spectroscopy. According to OC / EC analysis using EUSAAR_2 long thermal protocol, 22 % of the total carbon content of laboratory-generated TBs was identified as elemental carbon (EC), contrary to expectations based on the current understanding that negligible if any EC is present in this sub-fraction of the brown carbon family. Our results suggest that spherical atmospheric TBs with high C / O molar ratios are closer to BC in many of their properties than to weakly absorbing HULIS.


2019 ◽  
Vol 28 (1) ◽  
pp. 121-129
Author(s):  
Afroja Nasrin ◽  
Sayma Khanom ◽  
Shahid Akhtar Hossain

An incubation study was conducted to find out the best mixing ratio of acid and calcareous soil (maintaining 70% moisture) for pot experiment. Depending on various physico-chemical properties mixed soil 1 : 1 (i.e. acid : calcareous) was selected for pot experiment. The pot experiment was carried out to observe the effects of vermicompost and compost on soil properties and growth and yield of Kalmi (Ipomoea aquatica Forsk.). This experiment included seven treatments with three replications including control. Treatment variables were T0 (control), T1 (4 t/ha vermicompost), T2 (8 t/ha vermicompost), T3 (12 t/ha vermicompost), T4 (4 t/ha compost), T5 (8 t/ha compost) and T6 (12 t/ha compost). All the treatments had significant positive effects over control on growth and yield of kalmi. The highest growth and yield were recorded with T3 (12 t/ha vermicompost) treatment. In case of, macro and micronutrient uptake treatment T3 (12 t/ha vermicompost) performed best followed by T6 (12 t/ha compost) over T0 (control). However, in post-harvest soil except soil reaction (pH); electrical conductivity (EC), organic carbon (OC), available N, P, K, S, Ca, Mg, Na, Fe and Zn significantly increased for T3 (12 t ha-1 vermicompost) than T1, T2, T4, T5, T6 and T0. Dhaka Univ. J. Biol. Sci. 28(1): 121-129, 2019 (January)


Sign in / Sign up

Export Citation Format

Share Document