Biological and medical applications of plasma-activated media, water and solutions

2018 ◽  
Vol 400 (1) ◽  
pp. 39-62 ◽  
Author(s):  
Nagendra Kumar Kaushik ◽  
Bhagirath Ghimire ◽  
Ying Li ◽  
Manish Adhikari ◽  
Mayura Veerana ◽  
...  

Abstract Non-thermal atmospheric pressure plasma has been proposed as a new tool for various biological and medical applications. Plasma in close proximity to cell culture media or water creates reactive oxygen and nitrogen species containing solutions known as plasma-activated media (PAM) or plasma-activated water (PAW) – the latter even displays acidification. These plasma-treated solutions remain stable for several days with respect to the storage temperature. Recently, PAM and PAW have been widely studied for many biomedical applications. Here, we reviewed promising reports demonstrating plasma-liquid interaction chemistry and the application of PAM or PAW as an anti-cancer, anti-metastatic, antimicrobial, regenerative medicine for blood coagulation and even as a dental treatment agent. We also discuss the role of PAM on cancer initiation cells (spheroids or cancer stem cells), on the epithelial mesenchymal transition (EMT), and when used for metastasis inhibition considering its anticancer effects. The roles of PAW in controlling plant disease, seed decontamination, seed germination and plant growth are also considered in this review. Finally, we emphasize the future prospects of PAM, PAW or plasma-activated solutions in biomedical applications with a discussion of the mechanisms and the stability and safety issues in relation to humans.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Beau J. Fenner ◽  
Nur Zahirah B. M. Yusoff ◽  
Matthias Fuest ◽  
Lei Zhou ◽  
Francisco Bandeira ◽  
...  

Abstract Background Human corneal stromal keratocytes propagated in culture media supplemented with human amnion extract (AME) can correct early corneal haze in an animal model. Clinical application of cultivated keratocytes is limited by infectious disease screening before amnion products can be used in humans. It remains unclear if AME from cryopreserved versus fresh human amnion can support human keratocyte propagation, and which components of the extract promote keratocyte growth. Methods Three placentas were collected for the preparation of fresh and cryopreserved amnion tissues followed by homogenization and protein extraction. AME protein profiles were studied using isobaric tagging for relative and absolute quantitation (iTRAQ) proteomics. Enriched gene ontology (GO) terms and functional classes were identified. Primary human keratocytes from 4 donor corneas were cultured in media supplemented with fresh AME (F-AME) or cryopreserved AME (C-AME). Cell viability, proliferation and keratocyte marker expression were examined by confocal immunofluorescence and flow cytometry. Results AME proteomics revealed 1385 proteins with similar expression levels (between 0.5- and 2-fold) between F- and C-AME, while 286 proteins were reduced (less than 0.5-fold) in C-AME. Enriched GO term and biological pathway analysis showed that those proteins with comparable expression between F-AME and C-AME were involved in cell metabolism, epithelial-mesenchymal transition, focal adhesion, cell-extracellular matrix interaction, cell stress regulation and complement cascades. Human corneal stromal keratocytes cultured with F-AME or C-AME showed similar morphology and viability, while cell proliferation was mildly suppressed with C-AME (P > 0.05). Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and CD34 was similar in both cultures. Conclusion AME from cryopreserved amnion had limited influence on keratocyte culture. It is feasible to use protein extract from cryopreserved amnion to propagate human keratocytes for potential translational applications.


2020 ◽  
Vol 21 (2) ◽  
pp. 661 ◽  
Author(s):  
Celeste Caruso Bavisotto ◽  
Antonella Marino Gammazza ◽  
Filippa Lo Cascio ◽  
Emanuele Mocciaro ◽  
Alessandra Maria Vitale ◽  
...  

The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial–mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Junping Hu ◽  
Weiqing Han ◽  
Qing Zhu ◽  
Pin-Lan Li ◽  
Ningjun Li

Mesenchymal stem cells (MSCs) have been shown to be a promising therapy for many different diseases. Stem cell conditioned culture media (SCM) exhibit similar beneficial effects as MSCs. Albuminuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. The present study tested the hypothesis that SCM inhibit albumin-induced EMT in cultured renal tubular cells. SCM were obtained by culturing rat adult MSCs for 3 days. Cultured renal proximal tubular cells were incubated with rat albumin (20μg/ml) and treated with SCM or control culture media. Our results showed that 48 h albumin incubation stimulated EMT in renal proximal tubular cells as shown by significant decrease in the protein levels of epithelial marker E-cadherin from 2.30 ± 0.27 to 0.87 ± 0.11 ( P < 0.05) and increase in the protein levels of mesenchymal marker fibroblast-specific protein 1 (FSP-1) (2.18±0.33 folds, P < 0.05). SCM treatment significantly inhibited these albumin-induced changes in E-cadherin and FSP-1 by 2.33±0.17 and 1.95±0.23 folds ( P < 0.05), respectively. Meanwhile, albumin increased the mRNA levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 folds compared with control. SCM almost abolished the increase of MCP-1 induced by albumin. Furthermore, Western blot results displayed that albumin rapidly decreased the cytosolic levels and increased the nuclear levels of NF-κB, indicating a translocation of NF-κB; immunofluorescence microscopy also demonstrated that albumin induced NF-κB translocation from the cytosol into nucleus. SCM blocked the translocation of NF-κB into nucleus. These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting NF-κB activation and inflammation, which may serve as a new therapeutic approach for chronic kidney diseases. (Supported by NIH grant HL89563 and HL106042)


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Yuan ◽  
Peipei Han ◽  
Kai Tao ◽  
Shuhai Liu ◽  
Ehud Gazit ◽  
...  

Piezoelectric materials are important for many physical and electronic devices. Although many piezoelectric ceramics exhibit good piezoelectricity, they often show poor compatibility with biological systems that limits their biomedical applications. Piezoelectric peptide and metabolite materials benefit from their intrinsic biocompatibility, degradability, and convenient biofunctionalization and are promising candidates for biological and medical applications. Herein, we provide an account of the recent progress of research works on piezoelectric peptide and metabolite materials. This review focuses on the growth mechanism of peptide and metabolite micro- and nanomaterials. The influence of self-assembly processes on their piezoelectricity is discussed. Peptide and metabolite materials demonstrate not only outstanding piezoelectric properties but also unique electronic, optical, and physical properties, enabling their applications in nanogenerators, sensors, and optical waveguiding devices.


2015 ◽  
Vol 35 (5) ◽  
pp. 1719-1728 ◽  
Author(s):  
Junping Hu ◽  
Qing Zhu ◽  
Pin-Lan Li ◽  
Weili Wang ◽  
Fan Yi ◽  
...  

Background: Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods: Rat renal tubular cells were treated with/without albumin (20 µmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results: Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and a-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion: These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases.


Sign in / Sign up

Export Citation Format

Share Document