PCAT1 induced by transcription factor YY1 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-216a-3p to up-regulate oncogene BCL3

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dongsheng Sun ◽  
Yuqiao Zhao ◽  
Weina Wang ◽  
Canghai Guan ◽  
Zengtao Hu ◽  
...  

AbstractThis study was designed to illustrate the function and role of PCAT1 in CCA. The relative expression was confirmed by RT-qPCR and western blot. The biological function of PCAT1 was evaluated by CCK8, EdU, colony formation, wound healing, transwell, and subcutaneous tumor formation assays. Protein levels of EMT markers were measured by western blot. The binding relationship was predicted by JASPAR and starBase. The binding of YY1 to PCAT1 promoter was assessed by ChIP and luciferase reporter. The binding capacity between miR-216a-3p and PCAT1 as well as BCL3 was assessed by luciferase reporter and AGO2-RIP assays. In this study, we found that PCAT1 was up-regulated in CCA tissues and cells, and the PCAT1 overexpression was associated with poor prognosis. Moreover, PCAT1 was assessed as an independent risk factor of prognosis for CCA patients. Amplified PCAT1 was found to promote tumor proliferation, migration, invasion and EMT process, whereas PCAT1 knockdown inhibited these malignant phenotypes. Mechanistically, PCAT1 was predominantly localized in the cytoplasm and competitively bound miR-216a-3p to increase BCL3 expression. In addition, PCAT1 was activated by transcription factor YY1. This study revealed that PCAT1 acted as an oncogene in CCA, and the YY1/PCAT1/miR-216a-3p/BCL3 axis exhibited critical functions in CCA progression.

Author(s):  
Chenlong Song ◽  
Chongzhi Zhou

Abstract Background Homeobox A10 (HOXA10) belongs to the HOX gene family, which plays an essential role in embryonic development and tumor progression. We previously demonstrated that HOXA10 was significantly upregulated in gastric cancer (GC) and promoted GC cell proliferation. This study was designed to investigate the role of HOXA10 in GC metastasis and explore the underlying mechanism. Methods Immunohistochemistry (IHC) was used to evaluate the expression of HOXA10 in GC. In vitro cell migration and invasion assays as well as in vivo mice metastatic models were utilized to investigate the effects of HOXA10 on GC metastasis. GSEA, western blot, qRT-PCR and confocal immunofluorescence experiments preliminarily analyzed the relationship between HOXA10 and EMT. ChIP-qPCR, dual-luciferase reporter (DLR), co-immunoprecipitation (CoIP), colorimetric m6A assay and mice lung metastasis rescue models were performed to explore the mechanism by which HOXA10 accelerated the EMT process in GC. Results In this study, we demonstrated HOXA10 was upregulated in GC patients and the difference was even more pronounced in patients with lymph node metastasis (LNM) than without. Functionally, HOXA10 promoted migration and invasion of GC cells in vitro and accelerated lung metastasis in vivo. EMT was an important mechanism responsible for HOXA10-involved metastasis. Mechanistically, we revealed HOXA10 enriched in the TGFB2 promoter region, promoted transcription, increased secretion, thus triggered the activation of TGFβ/Smad signaling with subsequent enhancement of Smad2/3 nuclear expression. Moreover, HOXA10 upregulation elevated m6A level and METTL3 expression in GC cells possible by regulating the TGFB2/Smad pathway. CoIP and ChIP-qPCR experiments demonstrated that Smad proteins played an important role in mediating METTL3 expression. Furthermore, we found HOXA10 and METTL3 were clinically relevant, and METTL3 was responsible for the HOXA10-mediated EMT process by performing rescue experiments with western blot and in vivo mice lung metastatic models. Conclusions Our findings indicated the essential role of the HOXA10/TGFB2/Smad/METTL3 signaling axis in GC progression and metastasis.


2021 ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background: Circular RNA (circRNA) has been reported as an important regulator in the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and its possible mechanism.Methods: The expression of circRNA_100290 in GC cells and tissues were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated on AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assay, Western blot assay and qRT-PCR were used to explore the downstream pathways of circRNA_100290. The mechanism underlying the regulation of the expression of circRNA_100290 was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays.Results: The expression of circRNA_100290 was found significantly upregulated in GC cells and 102 GC tissues, high expression of circRNA_100290 in GC was closely related to Borrmann’s types, lymph node metastasis and tumor-node-metastasis staging. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, dual-luciferase reporter assay confirmed a direct binding between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene which is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, one of RNA binding proteins (RBPs), could inhibit the formation of circRNA_100290 via enriching flanking sites of circRNA_100290. Low expression of EIF4A3 in GC was related to a worse prognosis.Conclusions: Elevated circRNA_100290 in GC promotes cell proliferation, invasion and EMT via miR-29b-3p/ITGA11 axi and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNAs (circRNAs) have been reported to be important regulators of the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and the possible underlying mechanism. Methods The expression of circRNA_100290 in GC cells and tissues was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated in the AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assays, Western blot assays and qRT-PCR were used to explore the pathways downstream of circRNA_100290. The mechanism underlying the regulation of circRNA_100290 expression was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays. Results The expression of circRNA_100290 was significantly upregulated in GC cells and 102 GC tissues, and high circRNA_100290 expression in GC was closely related to Borrmann’s type, lymph node metastasis and tumour-node-metastasis stage. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, a dual-luciferase reporter assay confirmed the direct interaction between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene that is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, an RNA-binding protein (RBP), could inhibit the formation of circRNA_100290 by binding to the flanking sites of circRNA_100290. Low EIF4A3 expression in GC was related to a poor prognosis. Conclusions Elevated circRNA_100290 expression in GC promotes cell proliferation, invasion and EMT via the miR-29b-3p/ITGA11 axis and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy. Graphical abstract


Author(s):  
Zhenzhen Wang ◽  
◽  
Xintao Jing ◽  
Zhenghao Zhao ◽  
Fang Li ◽  
...  

Purpose: MicroRNAs (miRNA) have been reported in the regulation of various pathobiological progression in cancer. Our recent study has reported that miR-3614-3p significantly suppressed the proliferation of Breast Cancer (BC) cells through the downregulation its host gene TRIM25. However, the other functional role of miR3614-3p migration and invasion in BC and its mechanism have not been investigated thoroughly. Materials and methods: The MDA-MB-231 and MCF-7 BC cell lines were purchased. The cell line expression levels of miR-3614- 3p and AKT3/HDAC1 were determined by quantitative real-time PCR (qPCR). The wound healing assay and transwell migration assay were determined. We next measured protein levels of AKT3/HDAC1 by Western blot. Finally, we investigated the role of AKT3/HDAC1 using siRNA; and confirmed the targeting of 3’UTR of AKT3 and HDAC1 through miR-3614-3p using a luciferase reporter assay. Results: In the present research, we studied that overexpression of miR-3614-3p markedly suppressed tumor cell invasion and migration independent TRIM25, whereas through regulated another targets AKT3 and HDAC1 expression. Notably, TRIM25 is also a target gene of miR-3614 which bind to pri-miR-3614 caused TRIM25 silence. Conclusion: miR-3614-3p is an anti-oncogene that can suppress breast cancer cell aggressiveness by targeting AKT3 and HDAC1, which reveals the potential values of miR-3614-3p for suppression of metastasis of BC. Keywords: Breast cancer; miR-3614; AKT3; HDAC1.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1683-1695
Author(s):  
Weidong Zhou ◽  
Peifei Li ◽  
Peihua Jin

Abstract Background Gastric carcinoma (GC) ranks the fifth most common cancer worldwide, with high incidence and mortality rates. Numerous microRNAs (miRNAs), including miR-654-5p, have been implicated in the pathophysiological processes of tumorigenesis. Nevertheless, the mechanism of miR-654-5p in GC is unclear. Objectives Our study is devoted to exploring the function and molecular mechanism of miR-654-5p on the malignant cell behaviors of GC. Methods The gene expression was detected by reverse transcription quantitative polymerase chain reaction. GC cell proliferation and motion were assessed by colony formation assay and transwell assay. The binding capacity between miR-654-5p and G protein-regulated inducer of neurite outgrowth 1 (GPRIN1) was explored by luciferase reporter and RNA pulldown assays. The protein levels were detected by Western blotting. Results miR-654-5p expression was higher in GC cells and tissues than control cells and tissues. miR-654-5p promoted GC cell growth and motion. Moreover, our findings showed that miR-654-5p was bound with GPRIN1. Importantly, downregulation of GPRIN1 rescued the inhibitory influence of miR-654-5p knockdown on GC cell malignant behaviors. Additionally, miR-654-5p activated the nuclear factor kappa-B (NF-κB) pathway by regulation of GPRIN1. Conclusions miR-654-5p facilitated cell proliferation, migration, and invasion in GC via targeting the GPRIN1 to activate the NF-κB pathway.


2020 ◽  
Author(s):  
Fengqin Lu ◽  
Chunhong Li ◽  
Yuping Sun ◽  
Ting Jia ◽  
Na Li ◽  
...  

Abstract Background: Mounting evidences displayed that miRNAs play crucial roles in tumor initiation and development. However, the regulation and relevant mechanism of miR- miR-1825 in glioblastoma (GBM) remain unclear. Methods: qRT-PCR was used to detect miR-1825 and CDK14 mRNA expression. Western blot was applied for testing protein levels (VEGF, E-cadherin, N-cadherin, vimentin, β-catenin, c-myc, p-c-Jun). MTT and transwell assays were used for detecting GBM cell progression, including cell viability, migration, and invasion.Results: The results showed that miR-1825 was decreased in GBM tissue specimens by qRT-PCR and it was confirmed as a prognostic marker of GBM by Kaplan-Meier survival analysis. Moreover, we also found that miR-1825 up-regulation suppressed GBM cell viability, tumor growth, invasion and migration. Furthermore, CDK14 was first identified as the direct target of miR-1825 by Luciferase reporter assay. CDK14 acted as an oncogene in GBM development by Immunohistochemistry. In addition, Western blot analysis demonstrated that miR-1825 regulated Wnt/β-catenin signaling pathway in GBM development. Conclusion: In conclusion, miR-1825 up-regulation suppressed GBM progression by targeting CDK14 through Wnt/β-catenin pathway.


2020 ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNA (circRNA) has been reported as an important regulator in the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and its possible mechanism.Methods The expression of circRNA_100290 in GC cells and tissues were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated on AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assay, Western blot assay and qRT-PCR were used to explore the downstream pathways of circRNA_100290. The mechanism underlying the regulation of the expression of circRNA_100290 was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays.Results The expression of circRNA_100290 was found significantly upregulated in GC cells and 102 GC tissues, high expression of circRNA_100290 in GC was closely related to Borrmann’s types, lymph node metastasis and tumor-node-metastasis staging. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, dual-luciferase reporter assay confirmed a direct binding between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene which is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, one of RNA binding proteins (RBPs), could inhibit the formation of circRNA_100290 via enriching flanking sites of circRNA_100290. Low expression of EIF4A3 in GC was related to a worse prognosis.Conclusions Elevated circRNA_100290 in GC promotes cell proliferation, invasion and EMT via miR-29b-3p/ITGA11 axi and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy.


2020 ◽  
Author(s):  
Chong Wang ◽  
Yating Wu ◽  
Mengya Li ◽  
Shujuan Wang ◽  
Yanfang Liu

Abstract Background MicroRNAs (miRNAs) are vital for regulating the malignant phenotypes of tumor cells. The purpose of this work is to investigate the function and downstream mechanism of miR-103 in the progression of non-Hodgkin lymphoma (NHL). Methods and Materials Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect miR-103 and OTU deubiquitinase 7B (OTUD7B) mRNA expressions in NHL tissues and cells. Immunohistochemistry and Western blot were used to detect the expression of OTUD7B in NHL tissues and cells. CCK-8 experiment, flow cytometry analysis, and Transwell experiment were used to detect the role of NHL cell proliferation, apoptosis, migration and invasion. Bioinformatics, qRT-PCR, Western blot and dual-luciferase reporter assays were used to validate the targeting relationship between miR-103 and OTUD7B. NF-κB p65 luciferase reporter assay and Western blot were applied to determine NF-κB activity and the expression of NF-κB targeted genes. Results Compared to normal tissues and cells, miR-103 expression levels were remarkably up-regulated in NHL tissues and cell lines. The up-regulation of miR-103 dramatically promoted the proliferation, migration and invasion of NHL cells and inhibited apoptosis. Conversely, down-regulating miR-103 significantly inhibited malignant phenotypes of the NHL cells. Additionally, OTUD7B was identified as a target gene of miR-103, and miR-103 increased NF-κB activity indirectly via repressing OTUD7B. Conclusion The miR-103/OTUD7B/NF-κB axis is involved in NHL progression.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jishui Zhang ◽  
Wenhao Lv ◽  
Yagang Liu ◽  
Weihua Fu ◽  
Baosheng Chen ◽  
...  

Abstract Background Long non-coding RNAs exert vital roles in several types of cancer. The objective of this study was to explore the role of LINC_00355 in gastric cancer (GC) progression and its potential mechanism. Methods The expression levels of LINC_00355 in GC tissues and cells were detected by quantitative real-time PCR, followed by assessing the effects of LINC_00355 knockdown or overexpression on cell properties. Dual-luciferase reporter assay was utilized to identify the relationship between LINC_00355 and microRNA (miR)-15a-5p and miR-15a-5p and PHD finger protein 19 (PHF19), followed by the rescue experiments. Results The results showed that LINC_00355 was highly expressed in GC tissues and cells compared with the corresponding control. LINC_00355 knockdown decreased the viability, migration, and invasion and increased the accumulation of GC cells in G1 phase and apoptosis. Meanwhile, LINC_00355 downregulation markedly increased cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase protein levels, whereas decreased cyclin D1, cyclin E, matrix metalloproteinase (MMP) 9, MMP2, and N-cadherin protein levels in GC cells. However, LINC_00355 overexpression had the opposite effects. It was verified that LINC_00355 upregulated the expression of PHF19 through sponging miR-15a-5p. Furthermore, PHF19 overexpression reversed the effect of LINC_00355 knockdown on GC cell properties, including cell viability, migration, invasion, and apoptosis. Conclusions Collectively, these results suggest that LINC_00355 promotes GC progression by up-regulating PHF19 through sponging miR-15a-5p. Our findings may provide an important clinical basis for reversing the malignant phenotype of GC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document