scholarly journals Effect of an Arm Swing on Countermovement Vertical Jump Performance in Elite Volleyball Players

2016 ◽  
Vol 53 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Frantisek Vaverka ◽  
Daniel Jandačka ◽  
David Zahradník ◽  
Jaroslav Uchytil ◽  
Roman Farana ◽  
...  

AbstractThe aim of this study was to determine how elite volleyball players employed the arm swing (AS) to enhance their jump performance. The study assessed how the AS influenced the duration and magnitude of the vertical ground reaction force (VGRF) during the main phases (preparatory, braking and accelerating) of the countermovement vertical jump (CMVJ), the starting position of the body at the beginning of the accelerating phase and the moment when the AS began contributing to increasing the jump height. Eighteen elite volleyball players performed three CMVJs with and without an AS. Kinetics and kinematics data were collected using two Kistler force plates and the C-motion system. The time and force variables were evaluated based on the VGRF, and the position of the body and the trajectory of the arm movement were determined using kinematic analysis. The AS improved the CMVJ by increasing the jump height by 38% relative to jumping without an AS. The AS significantly shortened the braking phase and prolonged the accelerating phase, however, it did not influence the preparatory phase or the overall jump duration. The AS also significantly increased the average force during the accelerating phase as well as the accelerating impulse. The AS upward began at 76% into the overall jump duration. The AS did not influence the body position at the beginning of the accelerating phase. These findings can be used to improve performance of the CMVJ with the AS and in teaching beginning volleyball players proper jumping technique.

Author(s):  
Mahdi Cheraghi ◽  
Javad Sarvestan ◽  
Masoud Sebyani ◽  
Elham Shirzad

The importance of vertical jump in sport fields and rehabilitation is widely recognized. Furthermore, Force-Time variables of vertical jump are factors affecting jumping height. Exclusive review of each of this variables, in eccentric and concentric phases, can lead to a specific focus on them during jumping exercises. So, the aims of his study were to a) reviewing the relationship between force-time curve variables of eccentric and concentric phases with jump height and b) description of this variables in Iran national youth volleyball players society. This is an observational study. 12 elite volleyball player (Male, Iran national youth volleyball players, 17±0.7 years) have participated in this study. Correlation between Force-Time variables - included peak force (PF), relative peak force (RPP), peak power (PP), average power (AP), relative peak power (RPP), and Modified Reactive Strength Index (MRSI) - in eccentric and concentric phases and ultimate jump height has been studied. Results showed that the average power (r=0.7) and relative peak force (r=0.75) of concentric phase and MRSI (r=0.83) have significant correlation with ultimate jump height (JH). Relative peak power and average power of concentric phase can massively effect Jump Height in sports like volleyball, which vertical jump is an integral part of them. Focus on both of these factors, which has been studied in this research, in training programs, can improve athlete jump performance significantly.


Author(s):  
Mehmet Yildiz ◽  
Zeki Akyildiz ◽  
Filipe Manuel Clemente ◽  
Deniz Yildiz

In volleyball, spikes, and block jumps are among the most important movements when earning points and impacting performance. Many studies have found a greater jump height after acutely augmented feedback and extrinsic focus of attention on vertical jump height. However, there are limited studies on the long-term effects of using an overhead target on volleyball-specific vertical jumps (block and spike jumps). Therefore, the aim of the current study was to investigate the effects of using an overhead target on the vertical jump heights of volleyball players. Twenty-five professional male volleyball players (age: 24.44 ± 3.78 years; height: 1.82 ± 8.79 cm; body mass: 80.96 ± 9.37 kg) were randomly assigned either to the experimental group with an overhead target (OHT) ( n = 9), group without an overhead target (WOHT) ( n = 10), or the control group ( n = 8). The OHT group performed vertical jumps with an overhead target before their regular training program, while the WOHT group completed vertical jumps without an overhead target before their regular training program. Meanwhile, the control group performed only their regular training program, which was a 5 week (3 days per week) program. All participants’ spike jump (SPJ) and block jump (BJ) results were assessed before and after the intervention. A repeated-measures analysis of variance (3 × 2) did not reveal any significant between-group interactions for SPJ and BJ ( F = 7.32, p < 0.11 and F = 1.59, p < 0.22 respectively), but significant results were found for the time effect ( F = 96.33, p < 0.01 and F = 132.25, p < 0.01 respectively) and group × time interaction ( F = 42.59, p < 0.01 and F = 61.52, p < 0.01, respectively). While the pre- and post-tests for BJ and SPJ values did not change in the control group ( p > 0.05), both of these values increased in the OHT group (60.00 ± 5.95–67.44 ± 5.98 cm, p < 0.01 for d = 1.24 and 49.00 ± 6.74–56.22 ± 5.29 cm p < 0.01 for d = 1.19, respectively) and WOHT group (57.50 ± 4.86–60.50 ± 4.99 cm, p < 0.01 for d = 0.60 and 47.75 ± 4.65–50.25 ± 3.69 cm, p < 0.01 for d = 0.59). It has been suggested that trainers and professionals can use an overhead target to increase the BJ and SPJ heights of professional volleyball players.


2013 ◽  
Vol 8 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Saied Jalal Aboodarda ◽  
Ashril Yusof ◽  
N.A. Abu Osman ◽  
Martin W. Thompson ◽  
A. Halim Mokhtar

Purpose:To identify the effect of additional elastic force on the kinetic and kinematic characteristics, as well as the magnitude of leg stiffness, during the performance of accentuated countermovement jumps (CMJs).Methods:Fifteen trained male subjects performed 3 types of CMJ including free CMJ (FCMJ; ie, body weight), ACMJ-20, and ACMJ-30 (ie, accentuated eccentric CMJ with downward tensile force equivalent to 20% and 30% body mass, respectively). A force platform synchronized with 6 high-speed infrared cameras was used to measure vertical ground-reaction force (VGRF) and displacement.Results:Using downward tensile force during the lowering phase of a CMJ and releasing the bands at the start of the concentric phase increased maximal concentric VGRF (6.34%), power output (23.21%), net impulse (16.65%), and jump height (9.52%) in ACMJ-30 compared with FCMJ (all P < .05). However, no significant difference was observed in the magnitude of leg stiffness between the 3 modes of jump. The results indicate that using downward recoil force of the elastic material during the eccentric phase of a CMJ could be an effective method to enhance jump performance by applying a greater eccentric loading on the parallel and series elastic components coupled with the release of stored elastic energy.Conclusions:The importance of this finding is related to the proposition that power output, net impulse, takeoff velocity, and jump height are the key parameters for successful athletic performance, and any training method that improves impulse and power production may improve sports performance, particularly in jumping aspects of sport.


2021 ◽  
Author(s):  
Morikawa Masanori ◽  
Maeda Noriaki ◽  
Komiya Makoto ◽  
Kobayashi Toshiki ◽  
Urabe Yukio

Abstract Background: Ankle orthotics decreases the maximal vertical jump height. It is essential to maximize jump height and minimize ground contact time during athletic performance. However, the effect of ankle orthotics on athletic performance has not been reported. We aimed to investigate the effect of ankle orthotics on squat jump (SJ), countermovement jump (CMJ), and repetitive rebound jump (RJ) performance and the relationship between jump performance and restriction in sagittal ankle range of motion. Methods: Twenty healthy volunteers performed SJ, CMJ, repetitive RJ under no-orthosis and two orthotic conditions (orthosis 1 and orthosis 2). During SJ and CMJ, we measured the vertical ground reaction force and calculated the following parameters: jump height, peak vertical ground reaction force, rate of force development, net vertical impulse, and peak power. During repetitive RJ, the jump height, contact time, and RJ index were measured. A two-dimensional motion analysis was used to quantify the ankle range of motion in the sagittal plane during SJ, CMJ, and repetitive RJ. Results: Multivariate analysis of variance and the post hoc test showed a significant decrease in the vertical jump height (p = 0.003), peak power (p = 0.007), and maximum plantarflexion and dorsiflexion angles (p <0.001) during SJ using orthosis 2 compared to those using the no-orthosis condition. Additionally, orthosis 2 significantly decreased the jump height at the end of repetitive RJ (p = 0.046), during which a significant negative correlation was found between jump height and maximum dorsiflexion angle (r = 0.485, p = 0.030). Conclusions: An ankle orthosis-induced restriction of dorsiflexion is associated with a reduction in jump height during static jump and repetitive RJ performance.


2016 ◽  
Vol 50 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Azahara Fort-Vanmeerhaeghe ◽  
Gabriel Gual ◽  
Daniel Romero-Rodriguez ◽  
Viswanath Unnitha

AbstractThe primary objective of the present study was to evaluate the agreement between the dominant leg (DL) (determined subjectively) and the stronger leg (SL) (determined via a functional test) in a group of basketball and volleyball players. The secondary objective was to calculate lower limb neuromuscular asymmetry when comparing the DL vs the non-dominant leg (NDL) and the SL vs the weaker (WL) leg in the whole group and when differentiating by sex. Seventy-nine male and female volleyball and basketball players (age: 23.7 ± 4.5 years) performed three single-leg vertical countermovement jumps (SLVCJ) on a contact mat. Vertical jump height and an inter-limb asymmetry index (ASI) were determined. Only 32 (40%) of the subjects had a concordance between the perception of their dominant leg and the limb reaching the highest jump height. Using the DL as the discriminating variable, significant (p<0.05) inter-limb differences were found in the total group of players. When comparing between sexes, significant differences (p<0.05) arose in the female group only. With regard to the WL vs. the SL, significant (p<0.05) differences were noted in the whole group and when stratified into males and females. The mean ASI ranged from 9.31% (males) to 12.84% (females) and from 10.49% (males) to 14.26% (females), when comparing the DL vs. the NDL and the SL vs. the WL, respectively. Subjective expression of leg dominance cannot be used as a predictor of limb jump performance. Vertical jump asymmetry of 10-15% exists and this can be considered as a reference value for male and female basketball and volleyball players.


2005 ◽  
Vol 99 (3) ◽  
pp. 986-994 ◽  
Author(s):  
Jens Bojsen-Møller ◽  
S. Peter Magnusson ◽  
Lars Raundahl Rasmussen ◽  
Michael Kjaer ◽  
Per Aagaard

Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures ( r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps ( r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.


Author(s):  
Aruna Gulati ◽  
Rita Jain ◽  
Anuradha Lehri ◽  
Rajneesh Kumar

This study aimed to assess the effect of high and low levels of flexibility on key performance indicators of volleyball performance. Eighty-four volleyball players (n=84; mean±SD; decimal age: 16.57±1.51; height (cm): 176.23±8.77; body mass (kg): 66.14±11.79) were selected for the study. The design of the study was cross-sectional and to measure selected variables i.e. agility, lower body muscular power, and acceleration speed; 6×10 m shuttle run, countermovement jump (with arm swing) test and 20 m sprint test (standing start) were used. To measure the flexibility level of the players, sit and reach test was used. Shapiro-Wilk normality test was conducted to check the distribution of data and the Levine test was applied to check homogeneity of the variance in data. Participants were divided into two groups i.e. High Flexibility Group (HFG) and Low Flexibility Group (LFG) using k-means cluster analysis and independent t-test was applied to find the differences between HFG and LFG. The level of significance was set at p < 0.05. Results showed statistically significant difference between HFG and LFG in agility, acceleration speed and lower body muscular power and, based on the results, it was concluded coaches should include flexibility training in the regular training programme. The results obtained supported the rationale that baseline flexibility may influence the performance of volleyball players. <p> </p><p><strong> Article visualizations:</strong></p><p><img src="/-counters-/edu_01/0778/a.php" alt="Hit counter" /></p>


Retos ◽  
2018 ◽  
pp. 291-294
Author(s):  
Miguel Sánchez Moreno ◽  
Carlos García Asencio ◽  
Juan José González Badillo ◽  
David Díaz Cueli

Abstract. This study aimed to analyze the effect of strength training on physical performance in elite male volleyball players during the competitive season. Athletes were assessed at the start of season (SS), midpoint of the competitive season (MS), and at the end of the season (ES). Significant increases were observed in vertical jump height (CMJ), jump squat height (JS) and mean propulsive velocity (MPV) from SS to ES (P < 0.05). Likely beneficial increases were observed on CMJ from SS to MS, on JS from SS to MS and from MS to ES. In addition, likely beneficial effect was found on MPV from MS to ES. Over the full season (SS to ES), very likely beneficial effect was observed on CMJ, MPV and JS. In conclusion, increase in strength of lower limb and vertical jump can be achieved in professional volleyball players over a full playing season. Resumen. El objetivo del estudio fue analizar los efectos de un programa de entrenamiento de fuerza sobre el rendimiento en la fuerza del miembro inferior y la capacidad de salto vertical en jugadores de voleibol masculinos durante la temporada de competición. Los atletas fueron evaluados al inicio (SS), a la mitad (MS) y al final de la temporada (ES). Se observaron aumentos significativos en la altura del salto vertical (CMJ), del salto con cargas (JS) y en la velocidad media propulsiva (MPV) alcanzada con las cargas comunes en el ejercicio de sentadillas entre SS y ES (P < 0.05). El análisis basado en la magnitud del cambio reveló un aumento probable en CMJ de SS a MS, y en JS de SS a MS y de MS a ES. Además, un incremento probable se encontró en MPV de MS a ES. Durante la temporada completa (SS a ES), se observó un aumento muy probable en CMJ, en MPV y JS. En conclusión, se puede lograr un aumento en la fuerza de la extremidad inferior y el salto vertical en jugadores profesionales de voleibol durante una temporada de juego completa.


Author(s):  
Marion Cossin ◽  
Annie Ross ◽  
François Prince

Korean teeterboard is one of the most physically and technically demanding circus disciplines. Two performers take turns jumping vertically and land with high impact. The aims of this study were to (1) compare the stiffness across three different teeterboards, and (2) compare Peak Landing Force (PLF) and Maximal Loading Rate (MLR) of four acrobats performing jumps from three teeterboards using four landing techniques (normal, smooth, straight legs, and empty board). Pressure sensors were used to determine recorded forces under the feet, while Boosted Regression Trees (BRT) was used to analyze factors contributing to PLF and MLR. Standard static loading protocol was used to estimate teeterboard stiffness. PLF and MLR increased with jump height. PLF and MLR were reached when landing on the teeterboard with the highest stiffness. The “normal” and “straight legs” landing techniques were associated with higher PLF and MLR. The BRT model was able to associate both PLF and MLR with jump height, participant, teeterboard, and landing technique factors. PLF reached 13.5 times the body weight when landing on the stiffer teeterboard using the straight legs technique. Trainers should be aware of the injury risk to teeterboard acrobats during landing.


2013 ◽  
Vol 29 (6) ◽  
pp. 655-661 ◽  
Author(s):  
Pablo Floría ◽  
Andrew J. Harrison

The aim of this study was to evaluate the effect of age on the use of arm swing in the vertical jump. Counter-movement jumps with arms (CMJA) and without arms (CMJ) performed by 36 girls and 20 adult females were examined using force platform analysis. The data were analyzed to determine differences between groups and between types of jump. The analysis of the data indicated that the arm action increased the jump height in both groups, although the increase was greater in children than adults (22.6% and 18.7% respectively; P < .05). This difference in jump height was due to a combination of a greater increase of the height at take-off in children compared with adults (40.6% and 21.6% respectively; P < .05) with no differences in the increase of the flight height. This increase in height of take-off was accompanied by an increase in the distance of propulsion in CMJA compared with CMJ (0.25 m and 0.23 m respectively; P < .05). The results suggested that children take advantage of the action of the arms in vertical jump differently than adults. The children improved their jump height by increasing height at take-off whereas the adults improved by increasing the flight height.


Sign in / Sign up

Export Citation Format

Share Document