The Removal of Benzothiophene from Model Diesel on NaY and NiY Zeolites: Equilibrium and Kinetic Studies

Author(s):  
Ying Liu ◽  
Fei Liu ◽  
Rijie Wang ◽  
Xiaoxia Yang

Abstract This work investigates the adsorption of sulfur compounds in model fuel (benzothiophene dissolved in n-octane) on NaY and NiY zeolites from the points of adsorption equilibrium and kinetics. The crystal structures, textural properties and chemical compositions of zeolites were characterized by XRD, N2 physisorption and ICP-AES, respectively. The adsorption of sulfur from model diesel was processed in a batch experiment on NaY and NiY zeolites, and the effects of adsorption temperature and adsorption time on adsorption capacity were investigated. The experimental isotherm data were fitted using Langmuir, Freundlich and Toth models. The pseudo-first order, pseudo-second order, pseudo-n order and intra-particle diffusion models were applied to fit the kinetic data and determine the adsorption mechanism. It is observed from the correlation coefficient (R2) that Toth model is more appropriate to depict the isotherm equilibrium adsorption process and the sulfur uptake process follows the pseudo-n order rate expression on NaY and NiY zeolites. The diffusion study indicated that the adsorption of benzothiophene is controlled by two steps. Moreover, the results of the relative error (RE) analysis further confirm the conclusion of the kinetic study. Thermodynamic studies demonstrated that the adsorption process is exothermal and spontaneous. The equilibrium adsorption sulfur capacities are 20.66 and 28.21 mgS˙g−1 on NaY and NiY zeolites at 50 °C, respectively.

2020 ◽  
Vol 10 (21) ◽  
pp. 7493
Author(s):  
Witsarut Muangrak ◽  
Nutthavich Thouchprasitchai ◽  
Yuththaphan Phongboonchoo ◽  
Sangobtip Pongstabodee

A hybrid montmorillonite (Mt)-rich/chitosan composite (MCC) with high adsorption performance was synthesized for the decolorization of water used in the joss paper process. The performance was reported in terms of the dye removal. The composite expressed higher performance than chitosan or Mt-rich clay, respectively. The optimum condition for complete dye removal was achieved when using at least 0.6 g of the composite over a wide pH range (3–10) and initial dye concentration (10–100 mg L−1). The composite showed good reusability without the requirement of regeneration, adsorbing the dye completely for up to eight successive cycles of adsorption (>1.33 gdye gMCC−1). Thermodynamic analyses revealed the degree of spontaneity and the endothermic adsorption process. From the isotherm studies, the Koble–Corrigan isotherm model fitted very well to the experimental data, revealing that the composite had a heterogeneous surface with various active sites to adsorb the dye molecules. This also evidenced the synergistic electrostatic attraction and hydrophobic interaction between the dye and the composite. The pseudo-second-order model best explained the kinetic rate of adsorption. From evaluation of the adsorption process using the Webber and Morris equation and Boyd model, the rate-limiting step consisted of film diffusion and intra-particle diffusion.


Clay Minerals ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 81-92 ◽  
Author(s):  
S. Tomić ◽  
N. Rajić ◽  
J. Hrenović ◽  
D. Povrenović

AbstractNatural zeolitic tuff from Brus (Serbia) consisting mostly of clinoptilolite (about 90%) has been investigated for the reduction of the Mg concentration in spring water. The sorption capacity of the zeolite is relatively low (about 2.5 mg Mg g-1for the initial concentration of 100 mg Mg dm-3). The zeolitic tuff removes Mg from water solutions by ion exchange, which has been demonstrated by energy dispersive X-ray analysis (EDS). The extent of ion exchange was influenced by the pH and the initial Mg concentration. Kinetic studies revealed that Lagergen's pseudo-second order model was followed. Intra-particle diffusion of Mg2+influenced the ion exchange, but it is not the rate-limiting step. Rather than having to dispose of the Mg-loaded (waste) zeolite, a possible application was tested. Addition to a wastewater with a low concentration of Mg showed that it could successfully make up for the lack of Mg micronutrient and, accordingly, enabled the growth of phosphate-accumulating bacteriaA. Junii, increasing the amount of phosphate removed from the wastewater.


2010 ◽  
Vol 171-172 ◽  
pp. 15-18
Author(s):  
Zeng Quan Ji ◽  
Tian Hai Wang ◽  
Kai Hong Luo ◽  
Yao Qing Wang

An extracellular biopolymer (PFC02) produced by Pseudomonas alcaligenes was used as an alternative biosorbent to remove toxic Cd(II) metallic ions from aqueous solutions. The effect of experimental parameters such as pH, Cd(II) initial concentration and contact time on the adsorption was studied. It was found that pH played a major role in the adsorption process, the optimum pH for the removal of Cd(II) was 6.0. The FTIR spectra showed carboxyl, hydroxyl and amino groups of the PFC02 were involved in chemical interaction with the Cd(II) ions. Equilibrium studies showed that Cd(II) adsorption data followed Langmuir model. The maximum adsorption capacity (qmax) for Cd(II) ions was estimated to be 93.55 mg/g. The kinetic studies showed that the kinetic rates were best fitted to the pseudo-second-order model. The study suggestted that the novel extracellular biopolymer biosorbent have potential applications for removing Cd(II) from wastewater.


2018 ◽  
Vol 156 ◽  
pp. 02012 ◽  
Author(s):  
Mardiah ◽  
Rif’an Fathoni ◽  
Pratiwi Pudyaningtyas ◽  
Hamdania Gamu ◽  
Rinaldy

High Consumption of paper, bring the impact of the waste paper itself. And the utilization of the paper is limited to recycled products and crafts, whereas paper such as newspaper still contains cellulose that can be potential to be used as a heavy metal adsorbent. In this study, newspaper was dissolved in sodium bicarbonate to reduce various impurities and then was reacted with citric acid (CA). The modified adsorbent was characterized by FTIR and was tested for adsorb Cu(II) in artificial solution. After adsorption process, the solution was filtered and analysed using Atomic Absorption Spectrophotometer (AAS). The adsorption experimental data was fitted to Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich for equilibrium model and was fitted to pseudo first order reaction and pseudo second order reaction for kinetic studies. The result showed that CA-modification newspaper able to remove heavy metals Cu(II) in solution.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


2016 ◽  
Vol 74 (1) ◽  
pp. 276-286 ◽  
Author(s):  
Bin Huang ◽  
Dan Xiong ◽  
Tingting Zhao ◽  
Huan He ◽  
Xuejun Pan

Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer–Emmett–Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid–base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal.


2010 ◽  
Vol 62 (8) ◽  
pp. 1888-1897 ◽  
Author(s):  
Nan Chen ◽  
Zhenya Zhang ◽  
Chuanping Feng ◽  
Miao Li ◽  
Rongzhi Chen ◽  
...  

Kanuma mud, a geomaterial, is used as an adsorbent for the removal of fluoride from water. The influences of contact time, solution pH, adsorbent dosage, initial fluoride concentration and co-existing ions were investigated by batch equilibration studies. The rate of adsorption was rapid with equilibrium being attained after about 2 h, and the maximum removal of fluoride was obtained at pH 5.0–8.0. The Freundlich isotherm model was found to represent the measured adsorption data well. The negative value of the thermodynamic parameter ΔG suggests the adsorption of fluoride by Kanuma mud was spontaneous, the endothermic nature of adsorption was confirmed by the positive ΔH value. The negative ΔS value for adsorbent denoted decreased randomness at the solid/liquid interface. The adsorption process using Kanuma mud followed the pseudo-second-order kinetic model. Fluoride uptake by the Kanuma mud was a complex process and intra-particle diffusion played a major role in the adsorption process. It was found that adsorbed fluoride could be easily desorbed by washing the adsorbent with a solution of pH 12. This indicates the material could be easily recycled.


2012 ◽  
Vol 31 (1) ◽  
pp. 101 ◽  
Author(s):  
Zvezdana Yaneva ◽  
Bogdana Koumanova ◽  
Nedyalka Georgieva

The adsorption behavior of 2-nitrophenol (2-NP) and 2,4-dinitrophenol (2,4-DNP) on expanded perlite (EP) at equilibrium and kinetic conditions was investigated. The experimental equilibrium data were interpreted by Langmuir, Freundlich, Redlich–Peterson, Temkin and the multilayer isotherm models. Both the Temkin and the multilayer models gave the most satisfactory representation of the experimental data for 2-NP sorption on EP covering the whole concentration range, presuming high initial sorption rate, presence of adsorbent-adsorbate chemical interactions and multilayer adsorption, as the basic characteristics featuring the equilibrium behavior of the system studied. The experimental kinetic results were analyzed by the pseudo-first, pseudo-second order models, Bangham’s model, intra-particle diffusion model, and Elovich kinetic equation. The values of the calculated rate, mass transfer parameters and correlation coefficients proved that chemisorptions/intraparticle diffusion could be outlined as the basic rate controlling mechanisms during 2-NP/2,4-DNP sorption on expanded perlite. Uptake of nitrophenols increased in the order 2-NP < 2,4-DNP.


Author(s):  
Qiaoqiao Teng ◽  
Shufeng Ma ◽  
Mengyi Ni ◽  
Jiang Liu ◽  
Jinlei Yang ◽  
...  

Abstract A polyamine functionalized polystyrene resin (PSATA) was prepared via condensation reaction of acetylated polystyrene resin with triethylenetetramine, which, upon NaBH4 reduction, produced PSATAR. In comparison with the PSATA, the PSATAR with more flexible amine groups shows improved structural properties, and the equilibrium adsorption capacities of phenol, 2-nitrophenol (ONP) and 2,4-dinitrophenol (DNP) in wastewater were up to 1.073, 1.832 and 1.901 mmol/g, respectively. Their adsorption isotherms fit well with the Freundlich model, indicating a multilayer, heterogeneous adsorption nature. Kinetic studies indicated that the adsorption of phenolic compounds conforms to the pseudo-second-order kinetics with the adsorption rate controlled by film diffusion for ONP and DNP, and intra-particle diffusion in the later stage for phenol.


2011 ◽  
Vol 148-149 ◽  
pp. 357-360
Author(s):  
Jin Bo Huang ◽  
Min Cong Zhu ◽  
Zhi Fang Zhou ◽  
Hong Xia Zhang

Expanded graphite (EG) was prepared by microwave irradiation and evaluated as adsorbent for the removal of disperse blue 2BLN (DB) from aqueous solution by the batch adsorption technique under different conditions of initial pH value, adsorbent dosage, initial dye concentration and contact time. The experimental data were analyzed considering pseudo-first-order, pseudo-second-order and intra-particle diffusion approaches. The adsorption kinetics at room temperature could be expressed by the pseudo second order model very well. The results indicate that the adsorption rate is fast enough and more than eighty percent of the adsorbed DB can be removed in the first 15 min at room temperature, which makes the process practical for industrial application.


Sign in / Sign up

Export Citation Format

Share Document