Highly Effective Activated Carbons from Turkish–Kozlu Bituminous Coal by Physical and KOH Activation and Sorption Studies with Organic Vapors

Author(s):  
Fatma Oguz Erdogan ◽  
Turkan Kopac

Abstract Activated carbons were produced from coal by activations applying physical and chemical (with KOH) treatments for adsorption of selected organic vapors. Physical activations were carried out at 400–900°C under N2/CO2 flow. The effects of different variables such as carbonization temperature and flow rate on the final porous texture were investigated. Chemical activation gave more effective results in terms of both porosity development and adsorption capacity. Pore characterization of carbon samples was evaluated with the observation of N2 adsorption-desorption isotherms at 77 K. The adsorption of isopropyl alcohol, acetone and ethyl alcohol on the coal derived activated carbons were determined by a volumetric technique at room temperature. The highest surface area was obtained as 1904 m2/g by KOH treatment at 800°C. The adsorption isotherm data of the selected organic vapors on carbon samples were compared with the BET, Langmuir, Freundlich, Dubinin-Radushkevich, Dubinin-Astakhov, Harkins-Jura, Henderson, Halsey and Smith adsorption models. Adsorption capacities of organic vapors for carbon samples were related with the development of surface area. Among the four chemically activated carbons produced K1_K_600, K1_K_700 and K1_K_800 showed better isopropyl alcohol and acetone adsorption than the commercial activated carbon. K1_K_700 and K1_K_800 samples showed better ethyl alcohol adsorption. Isopropyl alcohol, acetone and ethyl alcohol adsorption capacities of the obtained sample that had the maximum surface area were determined as 39.7, 44 and 43.5 %, respectively. Results indicate that activated carbons prepared with KOH at 600–800°C could be effectively used for the adsorption of organic vapors.

2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Hanna Fałtynowicz ◽  
Jan Kaczmarczyk ◽  
Marek Kułażyński

AbstractActivated carbons from biomass material of giant knotweed Reynoutria sachalinensis (F. Schmidt ex Maxim.) Nakai were obtained. Use of this plant for manufacturing activated carbon has not been studied yet. Therefore, the first activated carbons of giant knotweed origin are described. Both physicochemical (by steam and CO2) and chemical (by KOH) activation methods were applied. Influences of temperature (500, 600, 700 and 800°C), burn-off [10, 25 and 50 wt. % (daf)] and KOH concentration on pores surface area and volume distribution of the obtained activated carbons were explored. Porosity of the elaborated sorbents was determined by benzene and carbon dioxide sorption measurements. Sorbents obtained by steam activation were micro- and mesoporous with surface area and volume of pores increasing with temperature and burn-off to V = 0.351 cm3 g-1 and S = 768 m2 g-1 at 800°C at 50% burn-off. Carbon dioxide activation resulted with notably microporous activated carbons with porous texture parameters also increasing with burn-off to V = 0.286 cm3 g-1 and S = 724 m2 g-1 at 50% burn-off. The highest BET surface area of 2541 m2 g-1 was achieved when chemical (KOH) activation was performed using KOH to char ratio 4:1.


2018 ◽  
Vol 3 (11) ◽  
pp. 6-11 ◽  
Author(s):  
Funda Ateş ◽  
Öznur Özcan

Activated carbons were prepared from poplar sawdust by chemical activation using ZnCl2, H3PO4 or KOH. The influence of activating agents, carbonization temperatures ranging from 500 ºC to 800 ºC, and mass ratio of chemical agent to precursor (1:1 and 2:1) on the porosity of activated carbons were studied. The properties of the carbons were characterized by adsorption/desorption of nitrogen to determine the BET areas, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). It was determined that the surface morphology and textural characteristics of activated carbons vary depending on the carbonization temperature or chemical agent. Maximum surface areas were obtained at carbonization temperatures of 500, 700 and 800 ºC for H3PO4, KOH and ZnCl2 activation, respectively. The activated carbons prepared using ZnCl2 and H3PO4 activation had a higher BET surface area (nearly 1100 m2/g) than that of the KOH activation (761 m2/g). This study also presents a comparison of mechanisms of activating agents and carbonization temperature. As a result of the experimental studies, positive results were obtained, and the production of activated carbon with a high surface area was conducted. 


2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


2019 ◽  
Vol 9 (23) ◽  
pp. 5132 ◽  
Author(s):  
Jung Eun Park ◽  
Gi Bbum Lee ◽  
Bum Ui Hong ◽  
Sang Youp Hwang

In this study, spent activated carbons (ACs) were collected from a waste water treatment plant (WWTP) in Incheon, South Korea, and regenerated by heat treatment and KOH chemical activation. The specific surface area of spent AC was 680 m2/g, and increased up to 710 m2/g through heat treatment. When the spent AC was activated by the chemical agent potassium hydroxide (KOH), the surface area increased to 1380 m2/g. The chemically activated ACs were also washed with acetic acid (CH3COOH) to compare the effect of ash removal during KOH activation. The low temperature N2 adsorption was utilized to measure the specific surface areas and pore size distributions of regenerated ACs by heat treatment and chemical activation. The functional groups and adsorbed materials on ACs were also analyzed by X-ray photoelectron spectroscopy and X-ray fluorescence. The generated ash was confirmed by proximate analysis and elementary analysis. The regenerated ACs were tested for toluene adsorption, and their capacities were compared with commercial ACs. The toluene adsorption capacity of regenerated ACs was higher than commercial ACs. Therefore, it is a research to create high value-added products using the waste.


2014 ◽  
Vol 699 ◽  
pp. 87-92 ◽  
Author(s):  
Abdul Rahim Yacob ◽  
Adlina Azmi ◽  
Mohd Khairul Asyraf Amat Mustajab

The characteristics and quality of activated carbons prepared depending on the chemical and physical properties of the starting materials and the activation method used. In this study, activated carbon prepared using pineapple waste. Three parts of pineapple waste which comprises of peel, crown and leaf were studied. For comparison activated carbon were prepared by both physical and chemical activation respectively. Three types of chemicals were used, phosphoric acid (H3PO4), sulphuric acid (H2SO4), and potassium hydroxide (KOH). The preparation includes carbonization at 200°C and activation at the 400°C using muffle furnace. The chemical characterization of the activated carbon was carried out using Thermogravimetric analysis (TGA), Nitrogen gas adsorption analysis and Fourier transform infrared (FTIR). The highest BET surface area was achieved when the pineapple peel soaked in 20% phosphoric acid with a surface area of 1115 m2g-1. FTIR analysis indicates that the reacted pineapple waste successfully converted into activated carbons.


Author(s):  
Sergio Acevedo ◽  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

Abstract Activated carbons are obtained by chemical activation of African Palm shells (Elaeis guineensis) with different impregnating agents, i. e. magnesium chloride (MgCl2) and calcium chloride (CaCl2) aqueous solutions at different concentrations (3, 5 and 7 % w/v) and temperatures (between 773 and 1073 K), in order to assess their influence on the development of the porosity. The activated carbons prepared are characterized in terms of both textural and chemical properties. The activated carbons have a surface area and a pore volume ranging between 19 and 501 m2.g−1 and 0.03–0.29 cm3.g−1, respectively. Based on the obtained results, the samples with higher surface area and pore volume (i. e. those impregnated with MgCl2 and CaCl2 solutions and thermally treated at 1073 K) are selected to evaluate the adsorption capacity and affinity for CO2. CO2 adsorption capacity varies between 1.78 and 2.95 mmolCO2.g−1 at 273 K and low pressure, and the activated carbon impregnated with the solution of MgCl2 3% and activated at 1073 K (i. e. ACMg3-1073) showed the best performances. Finally, the kinetic results show that adsorption rate for sample ACMg3-1073 is enhanced by its micro-mesoporous nature, being the access routes to the micropores larger.


2014 ◽  
Vol 881-883 ◽  
pp. 579-583 ◽  
Author(s):  
Ling Zhi Chen ◽  
Dong Xu Miao ◽  
Xiao Jie Feng ◽  
Jian Zhong Xu

Activated carbons (AC) were produced by chemical activation with potassium hydroxide (KOH) at 800°C from chars that were carbonized from reedy grass leaves at 450°C in N2atmosphere. The effects of the weight ratio of KOH/char ( impregnation ratio), activation temperature and duration time were examined. Adsorption capacity was demonstrated with iodine number. BET surface area, pore volume and pore size of activated carbons were characterized by N2adsorption isotherms. The maximum surface area and iodine number of the AC was 1100 m2/g and 1080 mg/g produced at 800°C for2h and impregnation ratio is 4:1.The characteristics of activated carbons were determined by Infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Thermal gravimetry (TG/DTA) analysis of raw material was carried out.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 378 ◽  
Author(s):  
Manuel Peñas-Garzón ◽  
Almudena Gómez-Avilés ◽  
Jorge Bedia ◽  
Juan Rodriguez ◽  
Carolina Belver

Several activated carbons (ACs) were prepared by chemical activation of lignin with different activating agents (FeCl3, ZnCl2, H3PO4 and KOH) and used for synthesizing TiO2/activated carbon heterostructures. These heterostructures were obtained by the combination of the activated carbons with a titania precursor using a solvothermal treatment. The synthesized materials were fully characterized (Wavelength-dispersive X-ray fluorescence (WDXRF), X-ray diffraction (XRD), Scanning electron microscopy (SEM), N2 adsorption-desorption, Fourier transform infrared (FTIR) and UV-visible diffuse reflectance spectra (UV-Vis DRS) and further used in the photodegradation of a target pharmaceutical compound (acetaminophen). All heterostructures were composed of anatase phase regardless of the activated carbon used, while the porous texture and surface chemistry depended on the chemical compound used to activate the lignin. Among all heterostructures studied, that obtained by FeCl3-activation yielded complete conversion of acetaminophen after 6 h of reaction under solar-simulated irradiation, also showing high conversion after successive cycles. Although the reaction rate was lower than the observed with bare TiO2, the heterostructure showed higher settling velocity, thus being considerably easier to recover from the reaction medium.


Sign in / Sign up

Export Citation Format

Share Document