Techno-economic Analysis of Wind Turbines in Algeria

Author(s):  
Omar Charrouf ◽  
Achour Betka ◽  
Mohamed Becherif ◽  
Abdulkader Tabanjat

AbstractIn this study, the wind energy potential and the unit energy cost related to six wind turbines in the city of Illizi in Southeast of Algeria are investigated. The hourly measured data (wind, pressure and temperature) observed during the period 2005–2014 at meteorological station in Illizi were used. An analysis of the collected data using the Weibull statistical method was made. The preliminary results were used to evaluate the power density in this region. Moreover, technical data of six chosen wind turbine models were analyzed to select the best appropriate turbine according to the techno economic analysis. The annual energy output of the selected wind turbines was calculated and the energy cost for each model was evaluated using two different methods. Input parameters affecting the cost, return on investment and payback period are also studied. For the 1MW wind turbine which, according to the economic analysis, is found to be the most suitable for this region, the cost of energy per kWh varies between 0.0388$ and 0.0634$ with PVC method and in range of 0.0878$ to 0.1142$ with LCOE method.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3706
Author(s):  
Justyna Zalewska ◽  
Krzysztof Damaziak ◽  
Jerzy Malachowski

Contrary to the extensive amount of research on large wind turbines, substantial analyses of small wind turbines are still rare. In the present study, the wind energy potential of three locations in Poland is analyzed using real wind data from a five-year period and the parameters of the selected turbine model. Appropriate simulations are performed to assess the energy efficiency of the analyzed investments at a coastal, foothill, or lowland site. According to the results, the most favorable location for a small wind turbine is the coastal site (wind zone I). The payback time at this location is approximately 13 years, whereas the payback times at the other two analyzed are more than 3 times longer. The payback periods for the latter locations significantly exceed the estimated lifetime of the wind turbine, ruling out their economic viability. The cost of electricity generation varies greatly, from 0.16 EUR/kWh at the coastal location to 0.71 EUR/kWh at the lowland location. These results provide a reference for developing more efficient solutions, such as the use of a turbine with a shielded rotor, which can increase the power of the turbine by approximately 2.5 times.


Author(s):  
Hyunseong Min ◽  
Cheng Peng ◽  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jun Zhang

Wind turbines are popular for harnessing wind energy. Floating offshore wind turbines (FOWT) installed in relatively deep water may have advantages over their on-land or shallow-water cousins because winds over deep water are usually steadier and stronger. As the size of wind turbines becomes larger and larger for reducing the cost per kilowatt, it could bring installation and operation risks in the deep water due to the lack of track records. Thus, together with laboratory tests, numerical simulations of dynamics of FOWT are desirable to reduce the probability of failure. In this study, COUPLE-FAST was initially employed for the numerical simulations of the OC3-HYWIND, a spar type platform equipped with the 5-MW baseline wind turbine proposed by National Renewable Energy Laboratory (NREL). The model tests were conducted at the Deepwater Offshore Basin in Shanghai Jiao Tong University (SJTU) with a 1:50 Froude scaling [1]. In comparison of the simulation using COUPLE-FAST with the corresponding measurements, it was found that the predicted motions were in general significantly smaller than the related measurements. The main reason is that the wind loads predicted by FAST were well below the related measurements. Large discrepancies are expected because the prototype and laboratory wind loads do not follow Froude number similarity although the wind speed was increased (or decreased) in the tests such that the mean surge wind force matched that predicted by FAST at the nominal wind speed (Froude similarity) in the cases of a land wind turbine [1]. Therefore, an alternative numerical simulation was made by directly inputting the measured wind loads to COUPLE instead of the ones predicted by FAST. The related simulated results are much improved and in satisfactory agreement with the measurements.


Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


2013 ◽  
Vol 569-570 ◽  
pp. 644-651 ◽  
Author(s):  
Navid Goudarzi ◽  
Wei Dong Zhu

A multiple generator drivetrain (MGD), where a single large generator in a wind turbine is replaced by multiple generators with the same or different rated powers, is proposed along with an automatic switch as an alternative to an existing MGD configuration. Qualitative and quantitative comparisons of a MGD with a conventional drivetrain are provided to better understand the advantages and disadvantages of having a MGD in wind turbines. New approaches for improving the efficiency and the reliability, expanding the operational range, and reducing the cost of a wind turbine are mentioned. A simple mathematical model for a MGD with electromagnetic clutches is developed, a novel prototype of a MGD is designed and fabricated, and experiments are conducted on the prototype. It is concluded that a multiple-generator drivetrain with generators operating individually or in parallel has a better potential of improving the efficiency and the reliability, expanding the operational range, and reducing the cost of offshore and onshore wind turbines than the existing MGD configuration.


2008 ◽  
Vol 45 (5) ◽  
pp. 26-38
Author(s):  
A. Ahmed Shata ◽  
S. Abdelaty ◽  
R. Hanitsch

Potential of Electricity Generation on the Western Coast of Mediterranean Sea in EgyptA technical and economic assessment has been made of the electricity generation by wind turbines located at three promising potential wind sites: Sidi Barrani, Mersa Matruh and El Dabaa in the extreme northwest of Egypt along the Mediterranean Sea. These contiguous stations along the coast have an annual mean wind speed greater than 5.0 m/s at a height of 10 m. Weibull's parameters and the power law coefficient for all seasons have been estimated and used to describe the distribution and behavior of seasonal winds at these stations. The annual values of wind potential at the heights of 70-100 m above the ground level were obtained by extrapolation of the 10 m data from the results of our previous work using the power law. The three stations have a high wind power density, ranging from 340-425 to 450-555 W/m2at the heights of 70-100 m, respectively. In this paper, an analysis of the cost per kWh of electricity generated by two different systems has been made: one using a relatively large single 2 MW wind turbine and the other - 25 small wind turbines (80 kW, total 2 MW) arranged in a wind farm. The yearly energy output of each system at each site was determined, and the electricity generation costs in each case were also calculated and compared with those at using diesel oil, natural gas and photovoltaic systems furnished by the Egyptian Electricity Authority. The single 2 MW wind turbine was found to be more efficient than the wind farm. For all the three considered stations the electricity production cost was found to be less than 2 ϵ cent/kWh, which is about half the specific cost of the wind farm.


JTAM ROTARY ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 117
Author(s):  
Rian Effendi ◽  
Rudi Siswanto

Wind turbine is one of the tools yamg work to take advantage of wind allergy. Wind turbines based on the type of rotor there are two types of Darrieus wind turbines and Savonius wind turbines. In the manufacturing process using a type of wind turbine type Darrieus. The darrieus turbine is a wind turbine that utilizes the lift style on the rotor blade. This turbine requires initial energy to spin. The formulation of the problem in making this wind turbine is How does the manufacturing process of vertical turbine type darrieus wind turbine and How much is the cost budget on the manufacturing process of the darrieus type verical wind turbine. The components of the wind turbine are the foot frame, bearing bearings, bearings, shafts, disks, blade arms, blades, transmission pulleys and belts-v, while the tools and machinery used in the manufacturing process are electric welding tools, electric grinding wheels, , hand drilling machine, sitting drilling machine, cut lever, riverter pliers, acetylene welding and lathe. Keywords: Wind Turbine, Turbine Components, Tools and MachinesApple, JM. Tata Letak Pabrik dan Pemindahan Bahan. Bandung : Penerbit ITB, Terj. Nurhayati Mardiono.,1990.Maheswari Hesti,Achmad Dany Firdauzy.2015. “Evaluasi Tata Letak Fasilitas Produksi Untuk Meningkatkan Efisiensi Kerja Pada Pt. Nusa Multilaksana. Fakultas Ekonomi”. Jakarta:Universitas Mercu Buana.Susetyo Joko dkk.2010. “Perancangan Ulang Tata Letak Fasilitas Produksi Dengan Pendekatan Group Technology Dan Algoritma Blocplan  Untuk Meminimasi Ongkos  Material Handling”. yogyakarta:AKPRIND.Nova St Meirizha. 2014. “Perancangan Ulang Tata Letak Fasilitas Pada Hanggar Pemeliharaan Pesawat Hawk 100/200  Di Pangkalan Udara Roesmin Nurjadin”. Riau: Program Studi Teknik Industri, Fakultas Teknik,Universitas Muhammadiyah.Wignjosoebroto, sritomo. Tata letak pabrik dan pemindahan bahan. Surabaya: penerbit guna widya., 1996.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3490 ◽  
Author(s):  
Joannes Olondriz ◽  
Josu Jugo ◽  
Iker Elorza ◽  
Santiago Alonso-Quesada ◽  
Aron Pujana-Arrese

Wind turbines usually present several feedback control loops to improve or counteract some specific performance or behaviour of the system. It is common to find these multiple feedback control loops in Floating Offshore Wind Turbines where the system perferformance is highly influenced by the platform dynamics. This is the case of the Aerodynamic Platform Stabiliser and Wave Rejection feedback control loops which are complementaries to the conventional generator speed PI control loop when it is working in an above rated wind speed region. The multiple feedback control loops sometimes can be tedious to manually improve the initial tuning. Therefore, this article presents a novel optimisation methodology based on the Monte Carlo method to automatically improve the manually tuned multiple feedback control loops. Damage Equivalent Loads are quantified for minimising the cost function and automatically update the control parameters. The preliminary results presented here show the potential of this novel optimisation methodology to improve the mechanical fatigue loads of the desired components whereas maintaining the overall performance of the wind turbine system. This methodology provides a good balance between the computational complexity and result effectiveness. The study is carried out with the fully coupled non-linear NREL 5-MW wind turbine model mounted on the ITI Energy’s barge and the FASTv8 code.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jeeng-Min Ling ◽  
Kunkerati Lublertlop

The wind speed characteristics are analyzed statistically based on a long-term hourly data record to evaluate the proper wind energy potential. The annual average wind speed and wind power density are investigated and compared by some significant indices, wind energy output and capacity factor, to show the variations of proper wind turbine specifications of installation in different locations of Taiwan. The minimum cost of wind energy is used to assess the economical feasibility for turbine installation in Taiwan. Great variations occur in the simulation results in both of the cost of energy and capacity factor. The detailed statistical analysis should be conducted to ensure the successful operation after wind turbine installations.


Author(s):  
N. Goudarzi ◽  
W. D. Zhu

Wind power as a source of green and abundant energy has acquired a great momentum across the world and is proposed as one of the main new world power sources. In the last few decades, wind turbines with different generators have been developed to increase the maximum power capture, minimize the costs, and expand the use of the wind turbines in both onshore and offshore applications. This paper studies the development of different types of wind turbine generator technologies and discusses the advantages and disadvantages of each type. In addition, a comparison of different generator designs based on the technical data and market trends is provided. To better understand the development of generator concepts on the market, the market trends of current large generators with a capacity of 2.5 MW and above across the world are evaluated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wang Wenxin ◽  
Chen Kexin ◽  
Bai Yang ◽  
Xu Yun ◽  
Wang Jianwen

AbstractGiven the increasing trend of using wind energy in cities, the utilization of distributed wind energy in cities has been widely concerned by researchers. The related research on the micro-site selection of wind turbines, a sub-project of the Task27 project of the International energy agency, was continued in this paper. The wind speed data of an observation station near Hohhot, Inner Mongolia, with a range of 10–19 m were collected. The evaluation included wind direction, Weibull parameter characteristics, and turbulence intensity. The potential energy output in 10 different heights was estimated using commercial horizontal and vertical axis wind turbines of the same power. Results showed that the following: the three-parameter Weibull distribution model can well describe the statistical properties of the wind speed in this site. The wind speed distribution model constructed from extrapolation parameters reflects the wind speed statistical properties out of detection positions to a certain extent. The wind energy density of the vertical axis wind turbine is slightly lower than that of the horizontal axis wind turbine. Furthermore, more power can be generated from March to May.


Sign in / Sign up

Export Citation Format

Share Document