Physicochemical Properties of Chilled Abalone as Influenced by Washing Pretreatment in Citric Acid Combined with High Pressure Processing

2014 ◽  
Vol 10 (4) ◽  
pp. 767-774
Author(s):  
Ji-Yeon Chun ◽  
Yeon-Ji Jo ◽  
Kyeong-Hun Jung ◽  
Mi-Jung Choi ◽  
Sang-Gi Min ◽  
...  

Abstract Citric acid pretreatment (2% and 4% citric acid) and high pressure processing (200–400 MPa for 3 min) were conducted to elucidate quality characteristics and shelf life of abalone during chilled storage. Physicochemical properties, total volatile basic nitrogen (TVB-N), and total viable count (TVC) were used as indicators of quality and the shelf life of abalone. Citric acid pretreatment caused a decrease in pH and lightness, and 4% citric acid pretreatment exhibited a positive effect on TVB-N and TVC. Pressurization suppressed the formation of TVB-N and the growth of TVC in abalone. However, excessive modification in physicochemical properties of abalone resulted from processing at a pressure higher than 300 MPa. To achieve microbial inactivation without severe modification in abalone quality, citric acid pretreatment with high pressure processing offered a potential advantage in maintaining characteristics of chilled abalone during prolonged storage period.

2019 ◽  
Vol 37 (No. 1) ◽  
pp. 57-61
Author(s):  
Markéta Adamcová ◽  
Vincent van Andel ◽  
Jan Strohalm ◽  
Milan Houška ◽  
Rudolf Ševčík

The need to reduce the content of questionable health preservatives leads to the search for new methods to extend the shelf-life of meat products. The spectrum of possible approaches includes physical methods and the use of additives from natural sources. In this study, we examined the influence of the combination of high-pressure processing (HPP) and the addition of natural antimicrobials on the shelf-life of cooked ham. The samples of cooked ham were produced in a professional meat processing plant. One half of the samples were produced according to a traditional recipe, and the other was enriched with potassium lactate in the form of a commercial product PURASAL<sup>®</sup> Hirer P Plus. This product is produced via sugar fermentation and contains high levels of potassium lactate, a compound with high antimicrobial activity. Cooked hams were inoculated by bacteria Serratia liquefaction, vacuum packaged and treated by HPP. Packaged ham samples were stored at 3°C for 40 days and the total microbial count was examined during this storage period in defined intervals. The combination of HPP and potassium lactate from natural sources significantly reduced the total microbial counts in cooked hams and, thus, could be a suitable solution for the meat industry.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2516
Author(s):  
Yun-Ting Hsiao ◽  
Chung-Yi Wang

This study examined the effects of high-pressure processing (HPP) on microbial shelf-life, starch contents, and starch gelatinization characteristics of pigeon pea milk. HPP at 200 MPa/240 s, 400 MPa/210 s, and 600 MPa/150 s reduced the count of Escherichia coli O157:H7 in pigeon pea milk by more than 5 log CFU/mL. During the subsequent 21-day refrigerated storage period, the same level of microbial safety was achieved in both HPP-treated and high-temperature short-time (HTST)-pasteurized pigeon pea milk. Differential scanning calorimetry and scanning electron microscope revealed that HPP at 600 MPa and HTST caused a higher degree of gelatinization in pigeon pea milk, with enthalpy of gelatinization (∆H) being undetectable for both treatments. In contrast, HPP at 400 MPa led to an increase in the onset temperature, peak temperature, and conclusion temperature, and a decrease in ∆H, with gelatinization percentages only reaching 18.4%. Results of an in vitro digestibility experiment indicate that maximum resistant starch and slowly digestible starch contents as well as a decreased glycemic index were achieved with HPP at 400 MPa. These results demonstrate that HPP not only prolongs the shelf-life of pigeon pea milk but also alters the structural characteristics of starches and enhances the nutritional value.


2011 ◽  
Vol 40 (8) ◽  
pp. 1136-1140 ◽  
Author(s):  
Jing-Yu Gou ◽  
Yun-Yun Zou ◽  
Geun-Pyo Choi ◽  
Young-Beom Park ◽  
Ju-Hee Ahn

2015 ◽  
Vol 36 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Jose Antonio Maldonado ◽  
Donald W. Schaffner ◽  
Alberto M. Cuitiño ◽  
Mukund V. Karwe

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ajith Amsasekar ◽  
Rahul S. Mor ◽  
Anand Kishore ◽  
Anupama Singh ◽  
Saurabh Sid

Purpose The increased demand for high-quality, nutritionally rich processed food has led to non-thermal food processing technologies like high pressure processing (HPP), a novel process for microbial inactivation with minimal loss of nutritional and sensory properties. The purpose of this paper is to highlight the impact of HPP on the microbiological, nutritional and sensory properties of food. Design/methodology/approach Recent research on the role of HPP in maintaining food quality and safety and the impact of process conditions with respect to various food properties have been explored in this paper. Also, the hurdle approach and the effectiveness of HPP on food quality have been documented. Findings HPP has been verified for industrial application, fulfilling the consumer demand for processed food with minimum nutrition loss at low temperatures. The positive impact of HPP with other treatments is known as the hurdle approach that enhances its impact against microorganism activity and minimizes the effects on nutrition and sensory attributes. Originality/value This paper highlights the impact of HPP on various food properties and a good alternative as non-thermal technology for maintaining shelf life, sensory properties and retention of nutrients.


Sign in / Sign up

Export Citation Format

Share Document