scholarly journals Microbial Shelf-Life, Starch Physicochemical Properties, and In Vitro Digestibility of Pigeon Pea Milk Altered by High Pressure Processing

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2516
Author(s):  
Yun-Ting Hsiao ◽  
Chung-Yi Wang

This study examined the effects of high-pressure processing (HPP) on microbial shelf-life, starch contents, and starch gelatinization characteristics of pigeon pea milk. HPP at 200 MPa/240 s, 400 MPa/210 s, and 600 MPa/150 s reduced the count of Escherichia coli O157:H7 in pigeon pea milk by more than 5 log CFU/mL. During the subsequent 21-day refrigerated storage period, the same level of microbial safety was achieved in both HPP-treated and high-temperature short-time (HTST)-pasteurized pigeon pea milk. Differential scanning calorimetry and scanning electron microscope revealed that HPP at 600 MPa and HTST caused a higher degree of gelatinization in pigeon pea milk, with enthalpy of gelatinization (∆H) being undetectable for both treatments. In contrast, HPP at 400 MPa led to an increase in the onset temperature, peak temperature, and conclusion temperature, and a decrease in ∆H, with gelatinization percentages only reaching 18.4%. Results of an in vitro digestibility experiment indicate that maximum resistant starch and slowly digestible starch contents as well as a decreased glycemic index were achieved with HPP at 400 MPa. These results demonstrate that HPP not only prolongs the shelf-life of pigeon pea milk but also alters the structural characteristics of starches and enhances the nutritional value.

2019 ◽  
Vol 37 (No. 1) ◽  
pp. 57-61
Author(s):  
Markéta Adamcová ◽  
Vincent van Andel ◽  
Jan Strohalm ◽  
Milan Houška ◽  
Rudolf Ševčík

The need to reduce the content of questionable health preservatives leads to the search for new methods to extend the shelf-life of meat products. The spectrum of possible approaches includes physical methods and the use of additives from natural sources. In this study, we examined the influence of the combination of high-pressure processing (HPP) and the addition of natural antimicrobials on the shelf-life of cooked ham. The samples of cooked ham were produced in a professional meat processing plant. One half of the samples were produced according to a traditional recipe, and the other was enriched with potassium lactate in the form of a commercial product PURASAL<sup>®</sup> Hirer P Plus. This product is produced via sugar fermentation and contains high levels of potassium lactate, a compound with high antimicrobial activity. Cooked hams were inoculated by bacteria Serratia liquefaction, vacuum packaged and treated by HPP. Packaged ham samples were stored at 3°C for 40 days and the total microbial count was examined during this storage period in defined intervals. The combination of HPP and potassium lactate from natural sources significantly reduced the total microbial counts in cooked hams and, thus, could be a suitable solution for the meat industry.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 682
Author(s):  
Mairead Campbell ◽  
Jordi Ortuño ◽  
Alexandros Ch. Stratakos ◽  
Mark Linton ◽  
Nicolae Corcionivoschi ◽  
...  

Black soldier fly larvae (BSFL) are gaining importance in animal feeding due to their ability to upcycle low-value agroindustry by-products into high-protein biomass. The present study evaluated the nutritional composition of BSFL reared on brewer’s by-product (BBP) and the impact of thermal (90 °C for 10/15 min) and high-pressure processing (HPP; 400/600MPa for 1.5/10 min) treatments on the microbial levels and in vitro digestibility in both ruminant and monogastric models. BBP-reared BSFL contained a high level of protein, amino acids, lauric acid, and calcium, and high counts of total viable counts (TVC; 7.97), Enterobacteriaceae (7.65), lactic acid bacteria (LAB; 6.50), and yeasts and moulds (YM; 5.07). Thermal processing was more effective (p < 0.05) than any of the HPP treatments in reducing TVC. Both temperature of 90 °C and pressure of 600 MPa reduced the levels of Enterobacteriaceae, LAB, and YM below the detection limit. In contrast, the application of the 400 MPa showed a reduced inactivation (p < 0.05) potential. Heat-treated samples did not result in any significant changes (p > 0.05) on any of the in vitro digestibility models, whereas HPP showed increased and decreased ruminal and monogastric digestibility, respectively. HPP did not seem to be a suitable, cost-effective method as an alternative to heat-processing for the large-scale treatment of BSFL.


2014 ◽  
Vol 10 (4) ◽  
pp. 767-774
Author(s):  
Ji-Yeon Chun ◽  
Yeon-Ji Jo ◽  
Kyeong-Hun Jung ◽  
Mi-Jung Choi ◽  
Sang-Gi Min ◽  
...  

Abstract Citric acid pretreatment (2% and 4% citric acid) and high pressure processing (200–400 MPa for 3 min) were conducted to elucidate quality characteristics and shelf life of abalone during chilled storage. Physicochemical properties, total volatile basic nitrogen (TVB-N), and total viable count (TVC) were used as indicators of quality and the shelf life of abalone. Citric acid pretreatment caused a decrease in pH and lightness, and 4% citric acid pretreatment exhibited a positive effect on TVB-N and TVC. Pressurization suppressed the formation of TVB-N and the growth of TVC in abalone. However, excessive modification in physicochemical properties of abalone resulted from processing at a pressure higher than 300 MPa. To achieve microbial inactivation without severe modification in abalone quality, citric acid pretreatment with high pressure processing offered a potential advantage in maintaining characteristics of chilled abalone during prolonged storage period.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Alexandra E. Hall ◽  
Carmen I. Moraru

AbstractThe effects of high-pressure processing (HPP) and heat treatment on the digestibility of protein and starch in pea protein concentrate (PPC) were investigated. Samples of PPC with 5% (5 P) and 15% (15 P) protein were treated by HPP (600 MPa/5 °C/4 min) or heat (95 °C/15 min) and their in vitro static and dynamic digestibility were compared to untreated controls. HPP-treated PPC underwent a greater degree of proteolysis and showed different peptide patterns after static gastric digestion compared to untreated and heat-treated PPC. Differences in protein digestibility among treatments during dynamic digestion were only significant (p < 0.05) during the first 20 min of jejunal, ileal, and total digestion for 5 P, and during the first 60 min of ileal digestion for 15 P. Neither static nor dynamic starch digestibility were dependent on treatment. HPP did not reduce trypsin inhibitor activity, whereas heat treatment reduced it by ~70%. HPP-induced structural modifications of proteins and starch did not affect their overall in vitro digestibility but enhanced gastric proteolysis.


2018 ◽  
Vol 18 (1) ◽  
pp. 10-15
Author(s):  
Wang Yi-Wei ◽  
He Yong-Zhao ◽  
An Feng-Ping ◽  
Huang Qun ◽  
Zeng Feng ◽  
...  

In this study, Chinese yam starch-water suspension (8%) were subjected to high-pressure homogenization (HPH) at 100 MPa for increasing cycle numbers, and its effect of on the physicochemical properties of the starch was investigated. Results of the polarizing microscope observations showed that the starch granules were disrupted (i.e. greater breakdown value) after HPH treatment, followed by a decrease in cross polarization. After three HPH cycles, the crystallinity of starch decreased, while the crystal type remained unaltered. Meanwhile, the contents of rapidly digestible starch and slowly digestible starch were increased. On the contrary, resistant starch content was decreased. Our results indicate that HPH treatment resulted in reduction of starch crystallinity and increase of starch digestibility.


2011 ◽  
Vol 40 (8) ◽  
pp. 1136-1140 ◽  
Author(s):  
Jing-Yu Gou ◽  
Yun-Yun Zou ◽  
Geun-Pyo Choi ◽  
Young-Beom Park ◽  
Ju-Hee Ahn

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1256
Author(s):  
Hansol Kim ◽  
Ah Hyun Jung ◽  
Sung Hee Park ◽  
Yohan Yoon ◽  
Beob Gyun Kim

The objectives of the present study were to determine the influence of thermal and non-thermal processing procedures on in vitro ileal disappearance (IVID) of dry matter (DM) and crude protein (CP) in chicken meat as dog foods using 2-step in vitro assays. In thermal processing experiments, IVID of DM and CP in chicken meat thermally processed at 70, 90, and 121 °C, respectively, with increasing processing time was determined. For non-thermal processing experiments, IVID of DM and CP in chicken meat processed by high-pressure, ultraviolet-light emitting diode (UV-LED), electron-beam, and gamma-ray was determined. Thermal processing of chicken meat at 70, 90, and 121 °C resulted in decreased IVID of CP (p < 0.05) as heating time increased. In non-thermal processing experiment, IVID of CP in chicken meat was not affected by high-pressure processing or UV-LED radiation. In vitro ileal disappearance of CP in electron-beam- or gamma-ray-irradiated chicken meat was not affected by the irradiation intensity. Taken together, ileal protein digestibility of chicken meat for dogs is decreased by thermal processing, but is minimally affected by non-thermal processing methods.


Foods ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 169 ◽  
Author(s):  
Biniam Kebede ◽  
Pui Lee ◽  
Sze Leong ◽  
Vidya Kethireddy ◽  
Qianli Ma ◽  
...  

High-Pressure Processing (HPP) and Pulsed Electric Fields (PEF) processing technologies are being used increasingly on a commercial basis, with high-quality labelled fruit juices being one of the most important promotion strategies. Quality-related enzymes, which might still be active after HPP and PEF pasteurization, can cause undesirable aroma changes during storage. This study investigated volatile changes during the shelf life of PEF (15.5 kV/cm and specific energy of 158 kJ/L), HPP (600 MPa for 3 min), and thermally (72 °C for 15 s) pasteurized Jazz apple juices—up to five weeks. To have an increased insight into the volatile changes, an integrated instrumental (GC-MS) and data analysis (chemometrics) approach was implemented. Immediately after pasteurization, PEF processing resulted a better retention of odor-active volatiles, such as (E)-2-hexenal and hexyl acetate, whereas thermal processing lowered their amount. During refrigerated storage, these volatiles have gradually decreased in all processed juices. By the end of storage, the amount of these aroma relevant volatiles appears to still be higher in PEF and HPP pasteurized juices compared to their conventional counterparts. This study demonstrated the potential of advanced chemometric approaches to obtain increased insight into complex shelf life changes.


Sign in / Sign up

Export Citation Format

Share Document