Non-Modal Instability of Core-Annular Flow

Author(s):  
Gennaro Coppola ◽  
Annagrazia Orazzo ◽  
Luigi de Luca

AbstractThe classical problem of the stability of Core-Annular Flow (CAF) in pipes is reconsidered from the point of view of the linear non-modal analysis. An accurate Chebyshev pseudospectral code in polar coordinates has been developed in order to separately discretize the two phases of the flow. Transient amplifications of the energy of three-dimensional perturbations are computed by taking into account the effects of viscosity and volume ratios between the two liquids, as well as of Reynolds number and a surface tension parameter.A detailed investigation is conducted in wide regions of the parameters space and the occurrence of remarkable transient growths is found for asymptotically both stable and unstable configurations. Optimal perturbations (i.e. giving the maximum energy amplification) are determined and their structure is analyzed. It is shown that in conditions in which axisymmetric modes are expected to constitute the most dangerous exponential disturbances, spiral perturbations can provide higher levels of transient energy amplification. Growth rates and amplification levels relative to modal and non-modal mechanisms are compared in order to analyze more in depth previous disagreements between experiments and modal theory.

2014 ◽  
Vol 747 ◽  
pp. 44-72 ◽  
Author(s):  
A. Orazzo ◽  
G. Coppola ◽  
L. de Luca

AbstractThe linear stability of the horizontal pipe flow of an equal density oil–water mixture, arranged as acore–annular flow(CAF), is here reconsidered from the point of view of non-modal analysis in order to assess the effects of non-normality of the linearized Navier–Stokes operator on the transient evolution of small disturbances. The aim of this investigation is to give insight into physical situations in which poor agreement occurs between the predictions of linear modal theory and classical experiments. The results exhibit high transient amplifications of the energy of three-dimensional perturbations and, in analogy with single-fluid pipe flow, the largest amplifications arise for non-axisymmetric disturbances of vanishing axial wavenumber. Energy analysis shows that the mechanisms leading to these transient phenomena mostly occur in the annulus, occupied by the less viscous fluid. Consequently, higher values of energy amplifications are obtained by increasing the gap between the core and the pipe wall and the annular Reynolds number. It is argued that these linear transient mechanisms of disturbance amplification play a key role in explaining the transition to turbulence of CAF.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1733
Author(s):  
Zijian Ye ◽  
Chengping Zhang

The improvement of the contact state between the surrounding rock and tunnel lining, such as the effect of back-fill grouting behind lining, was important for maintaining the stability of the lining structure. To explore the influence of loose contact states behind lining on the safety of tunnel lining, a case of field investigation in a railway tunnel with a symmetrical lining structure was presented in this paper. A model test was conducted to prove the accuracy of the numerical simulation in the condition of dense contact state between the lining and surrounding rocks. Based on this, the three-dimensional (3-D) impact of loose contact states on the mechanic behavior of the lining structure under different compactness and different loose contact areas behind lining was investigated and summarized. Furthermore, the influence of the percentage of the insufficient strength behind lining was explored. Finally, the grade of the influence of the loose contact state on the safety of the lining structure was classified. The results revealed that: (1) in order to maintain the stability of lining structure, the compactness of the back-fill grouting behind lining was recommended to be above 80%, and the range of the loose contact area should be no more than 60 degree; (2) the strength of the back-fill grouting behind lining should be above 50% strength of the surrounding rock, the loose contact state behind lining should be improved in time to avoid expansion of the loose contact area; and (3) the classification of the influence grade on the safety of the lining structure provides a basic reference for controlling the quality of the back-fill grouting. This research gives a new point of view for the evaluation of the contact state between lining and surrounding rock.


2008 ◽  
Vol 601 ◽  
pp. 407-424 ◽  
Author(s):  
NAZISH HODA ◽  
MIHAILO R. JOVANOVIĆ ◽  
SATISH KUMAR

Energy amplification in channel flows of Oldroyd-B fluids is studied from an input–output point of view by analysing the ensemble-average energy density associated with the velocity field of the linearized governing equations. The inputs consist of spatially distributed and temporally varying body forces that are harmonic in the streamwise and spanwise directions and stochastic in the wall-normal direction and in time. Such inputs enable the use of powerful tools from linear systems theory that have recently been applied to analyse Newtonian fluid flows. It is found that the energy density increases with a decrease in viscosity ratio (ratio of solvent viscosity to total viscosity) and an increase in Reynolds number and elasticity number. In most of the cases, streamwise-constant perturbations are most amplified and the location of maximum energy density shifts to higher spanwise wavenumbers with an increase in Reynolds number and elasticity number and a decrease in viscosity ratio. For similar parameter values, the maximum in the energy density occurs at a higher spanwise wavenumber for Poiseuille flow, whereas the maximum energy density achieves larger maxima for Couette flow. At low Reynolds numbers, the energy density decreases monotonically when the elasticity number is sufficiently small, but shows a maximum when the elasticity number becomes sufficiently large, suggesting that elasticity can amplify disturbances even when inertial effects are weak.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mourad Choulli ◽  
Masahiro Yamamoto

AbstractUniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover, New York, 1953], these kind of problems are known to be ill-posed and even severely ill-posed. Until now, there are only few partial results concerning the quantification of the stability of parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Maria Laura Delle Delle Monache ◽  
Karen Chi ◽  
Yong Chen ◽  
Paola Goatin ◽  
Ke Han ◽  
...  

This paper uses empirical traffic data collected from three locations in Europe and the US to reveal a three-phase fundamental diagram with two phases located in the uncongested regime. Model-based clustering, hypothesis testing and regression analyses are applied to the speed–flow–occupancy relationship represented in the three-dimensional space to rigorously validate the three phases and identify their gaps. The finding is consistent across the aforementioned different geographical locations. Accordingly, we propose a three-phase macroscopic traffic flow model and a characterization of solutions to the Riemann problems. This work identifies critical structures in the fundamental diagram that are typically ignored in first- and higher-order models and could significantly impact travel time estimation on highways.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
András L. Szabó ◽  
Bitan Roy

Abstract We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1) ⊗ SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a small parameter ϵ with ϵ = d−1, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings ∼ ϵ. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of weak rotational symmetry breaking on the stability of various RG fixed points.


Sign in / Sign up

Export Citation Format

Share Document