Effects of Hydrothermal Seawater Aging on the Mechanical Properties and Water Absorption of Glass/Aramid/Epoxy Hybrid Composites

2021 ◽  
Vol 36 (1) ◽  
pp. 79-93
Author(s):  
Z. A. Oğuz ◽  
A. Erkliğ ◽  
Ö. Y. Bozkurt

Abstract With the increase in the diversity of applications, the effect of environmental conditions on the mechanical properties of polymeric composites have become more valuable due to the sensitivity of polymers to aging. In this study, an experimental investigation was carried out to study the seawater aging effect on the flexural and low-velocity impact behavior of glass/aramid/ epoxy hybrid composites. Four types of composite groups that are [G6]S, [A6]S, [G3A3]S, [A3G3]S manufactured by vacuum infusion method were immersed in seawater at 25 °C and 70°C for 1000 h. Mechanical tests were conducted under three different conditions, namely, dry, wet, re-dried. As temperature increases, the water gain ratio also increases for all composite groups. Flexural strength was significantly reduced with seawater absorption for the wet state tested groups at each temperature. The reductions in flexural strength of the re-dried test groups are less than in the wet state test samples. Charpy test results showed that as the composite groups were exposed to hydrothermal aging, the impact strength of the plain glass/ epoxy, GAG/epoxy, and AGA/epoxy hybrid composite decreased. SEM analysis showed that as temperature increases, delamination and fiber/matrix cracks also increases.

2012 ◽  
Vol 488-489 ◽  
pp. 501-505
Author(s):  
Zafarullah Khan

In recent years, for the purpose of achieving enhanced mechanical properties of fiber reinforced composites, hybridized composites containing a combination of two or more types of fiber reinforcements have been explored. Perhaps the main parameter which controls the mechanical properties of the hybrid composites is the flexibility to arrange the hybrid fiber reinforcement layers in a variety of ways within the hybrid laminate. In this study, low velocity drop weight impact resistance of plain weave woven glass and carbon hybrid composites has been investigated. The study explores the effects of intra-ply arrangement sequence on the impact resistance of 24 and 32 ply laminates in which glass and the carbon plies have been differently stacked. The results show that impact resistance of woven glass fiber composites can be enhanced by hybridizing woven glass fabrics with woven carbon fabrics. The results indicate that the impact resistance is a function of the positions of the glass and carbon layers in the hybridized inter ply laminates.


2019 ◽  
Vol 895 ◽  
pp. 176-180
Author(s):  
C.K. Yogish ◽  
S. Pradeep ◽  
B. Kuldeep ◽  
K.P. Ravikumar ◽  
Rao R. Raghavendra

Over the last decades composite materials, plastics and ceramics have been the dominant emerging materials. The volume and number of applications of composite materials have grown steadily, penetrating and conquering new markets relentlessly. So everybody is concentrating on new materials which will be strong enough, less weight, recyclable with reduced cost. Hence all the researchers are concentrated on the composite materials which have all the above properties. The present work is concentrated on coconut coir fiber and Rice husk reinforced polyester hybrid composites. The composites specimen was fabricated with various weight percentages of natural fibers namely coconut coir (20%, 15%, 10%, and 5%) and Rice husk (15%, 10%, and 5%) combined with CamElect 3321 resin using hand lay-up method. So to obtain new composite materials different proportions of coconut coir and Rice husk is added and the mechanical properties such as Tensile strength, Flexural Strength and Impact test were carried out for the samples cut from the fabricated composites specimen to the dimensions as per ASTM standard. With the increasing percentage of the reinforcements the performance of the material is improving. The tensile strength increases with the increase in coir reinforcement percentage and flexural strength increases with the increasing in percentage of the rice husk and the impact strength of the material gets boost with equal proportional percentage of coconut coir and rice husk reinforcement.


2017 ◽  
Vol 54 (2) ◽  
pp. 286-290 ◽  
Author(s):  
Marina Bunea ◽  
Radu Bosoanca ◽  
Cristian Eni ◽  
Nicoleta Cristache ◽  
Victorita Stefanescu

In this research, the impact behavior of hybrid composite materials subjected to low-velocity impact using the drop-weight installation was investigated. For this study were manufactured eight hybrid materials. All the materials were tested to 90J impact energy. The effect of fabric types used in outer layers on impact performance was studied. The impact characteristics of hybrid materials with G1 glass fabric sheets were compared with those of hybrid materials with G2 glass fabric sheets. The damage surfaces of hybrid laminates were examined by visual investigation. The results obtained showed that the using of G2 glass fabric in structure of hybrid materials improved considerable the impact characteristics.


2021 ◽  
Author(s):  
Davide Mocerino ◽  
Luca Boccarusso ◽  
Dario De Fazio ◽  
Massimo Durante ◽  
Antonio Langella ◽  
...  

The use of composite hybridization using both synthetic and natural fibers, is one of the most established way to combine the advantages of each material that forms the composite system in order to obtain a composite with good in-plane and out-of-plane properties. For example, as pointed out in authors previous research works, considering carbon/hemp hybrid composites, it is possible to combine the ductile behavior and the capacity to absorb energy of hemp fibers with the higher strength and stiffness of carbon allowing the development of a hybrid system with enhanced energy absorption capability, reduced production cost and lower environmental impact respect to traditional carbon fibers composites. The aim of this work is to investigate both experimentally and numerically the mechanical behavior at impact of pure carbon, pure hemp and carbon/hemp hybrid composite laminate. Low velocity impact tests at 10 J and 20 J were carried and non-destructive analyses were performed for each impact energy to evaluate the internal damage extent. The same tests were numerically simulated with LS-DYNA software using shell elements and different material cards (i.e. MAT 54/55, MAT 24 depending on typology of fibers) and contact conditions in order to find the best configuration that matches the experimental results.


2018 ◽  
Vol 11 (4) ◽  
pp. 46-52
Author(s):  
Aidel Kadum Jassim Al-shamary

In this study, the effect of low velocity impact  response of Kevlar/carbon hybrid composite has been investigated. Then the impacted specimens were subjected to compression and buckling tests at room temperature experimentally. The height, width and thickness of the specimens are 150, 100 and 2.1 mm, respectively. Impact tests have been performed under different impact energy levels by using low velocity impact testing machine. Compression and buckling tests were conducted by Shimadzu testing machine. According to obtained results, the damage increases by increasing the impact energy level in the subjected specimens to impact test.  Compression strength value is higher about 3  times than buckling strength value.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 738
Author(s):  
Kamila Sałasińska ◽  
Mikelis Kirpluks ◽  
Peteris Cabulis ◽  
Andrejs Kovalovs ◽  
Eduard Skukis ◽  
...  

Different types of fabrics, such as aramid (A), carbon (C), basalt (B), glass (G), and flax (F), as well as powder fillers, were used to manufacture the epoxy-based hybrid composites by the hand-lay-up method. In this work, a few research methods, including hardness, flexural tests, puncture impact behavior, as well as cone calorimetry (CC) measurements, were applied to determine the impact of type fillers and order of fabrics on the performance and burning behavior of hybrid composites. The mechanical properties were evaluated to correlate with the microstructure and consider together with thermogravimetric analysis (TGA) data.


2020 ◽  
Vol 175 ◽  
pp. 12005 ◽  
Author(s):  
Amer Karnoub ◽  
Hajian Huang ◽  
Imad Antypas

The purpose of this work is to study the mechanical characteristics in 3-point bending and in traction; static; and the impact behavior of three specimens of laminates made of glass fiber and polyester resin non-woven and woven, with the aim of using them in the repair of boat hulls and enhancing their value in the naval industry. Three types of laminates were developed by contact molding. These different specimens of laminates made of woven, non-woven and combined glass fiber (woven and non-woven) were subjected to mechanical tests (traction and 3-point bending). Analysis of the results of the tests carried out on these three types of laminate shows that one specimen stands out and gives higher mechanical performance than the othertwo.


Author(s):  
Inchara C ◽  
Shantharaja M ◽  
Yogesh Kumar K J

Polymer and their composites are used in many engineering applications as an alternate of metals, because of the parameters such as low cost, light weight and durability. Hybridization is a process of mixing two or more similar or dissimilar materials. It increases the performance and efficiency. In this study investigation has been made on mechanical properties of HDPE polymer based hybrid composites fabricated from the effect of various synthetic fibers (SGF ,PTFE,SCF), synthetic fillers(Silica, hydroxyapatite, zirconia) by melt mixing method using twin screw extruder followed by injection molding technique. The mechanical properties of the samples such as tensile test, flexural test were measured by universal testing machine. And the impact test was performed on Izod impact testing machine. The results show that the tensile strength of hybrid composite TR-4 sample increases compared to other composites. Flexural strength of sample TR-6 shows highest flexural strength comparted to others. The impact strength increases when the filler materials 2% of zirconia and 2% of hydroxyapatite are added to composite material i.e. is TR-6 sample.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2769
Author(s):  
Jonne Oja ◽  
Lippo Lassila ◽  
Pekka K. Vallittu ◽  
Sufyan Garoushi

The aim of current in vitro research was to determine the effect of hydrothermal accelerated aging on the mechanical properties and wear of different commercial dental resin composites (RCs). In addition, the effect of expiration date of the composite prior its use was also evaluated. Five commercially available RCs were studied: Conventional RCs (Filtek Supreme XTE, G-aenial Posterior, Denfil, and >3y expired Supreme XTE), bulk-fill RC (Filtek Bulk Fill), and short fiber-reinforced RC (everX Posterior). Three-point flexural test was used for determination of ultimate flexural strength (n = 8). A vickers indenter was used for testing surface microhardness. A wear test was conducted with 15,000 chewing cycles using a dual-axis chewing simulator. Wear pattern was analyzed by a three-dimensional (3D) noncontact optical profilometer. Degree of C=C bond conversion of monomers was determined by FTIR-spectrometry. The specimens were either dry stored for 48 h (37 °C) or boiled (100 °C) for 16 h before testing. Scanning electron microscopy (SEM) was used to evaluate the microstructure of each material. Data were analyzed using ANOVA (p = 0.05). Hydrothermal aging had no significant effects on the surface wear and microhardness of tested RCs (p > 0.05). While flexural strength significantly decreased after aging (p < 0.05), except for G-aenial Posterior, which showed no differences. The lowest average wear depth was found for Filtek Bulk Fill (29 µm) (p < 0.05), while everX Posterior and Denfil showed the highest wear depth values (40, 39 µm) in both conditions. Passing the expiration date for 40 months did not affect the flexural strength and wear of tested RC. SEM demonstrated a significant number of small pits on Denfil’s surface after aging. It was concluded that the effect of accelerated aging may have caused certain weakening of the RC of some brands, whereas no effect was found with one brand of RC. Thus, the accelerated aging appeared to be more dependent on material and tested material property.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


Sign in / Sign up

Export Citation Format

Share Document