Protective effect of chloroform extract of Stereospermum chelonoides bark against amyloid beta42 induced cell death in SH-SY5Y cells and against inflammation in Swiss albino mice

2018 ◽  
Vol 29 (6) ◽  
pp. 621-630
Author(s):  
Md. Imamul Islam ◽  
Meena Afroze Shanta ◽  
Milon Mondal ◽  
Nazia Hoque ◽  
Senjuti Majumder ◽  
...  

Abstract Background This study was designed to evaluate the free radical scavenging property of chloroform extract of the bark of Stereospermum chelonoides (SCBC) and to investigate its potential in Alzheimer’s disease and inflammation, two oxidative stress related disorders. Methods Preliminary phytochemical analysis and in vitro antioxidant potential of SCBC were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, ferric reducing antioxidant power (FRAP) assay, cupric reducing antioxidant capacity (CUPRAC) and total antioxidant capacity determination assay. Total phenol and total flavonoid contents were also determined. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based cytotoxicity and cyto-protective assays were performed on human neuroblastoma SH-SY5Y cells. Thioflavin-T assay and caspase activation measurement assay were carried out to elucidate the mechanism of cytoprotection of SCBC observed here. In vivo anti-inflammatory potential was measured using croton oil and xylene induced ear edema tests. Results Phytochemical screening of SCBC revealed the presence of various phytoconstituents. Dose-dependent in vitro antioxidant activity was observed. The extract was enriched in flavonoids and polyphenolic compounds too. SCBC was found to inhibit amyloid-β peptide 1-42 (Aβ42) induced cell death in a dose-dependent manner. Encouraged by the cyto-protective effect, its effects on Aβ42 fibrillogenesis and caspase-3 activated apoptosis were observed. SCBC significantly slowed down the Aβ42 fibrillogenesis and caspase-3 activation in a concentration-dependent manner indicating its probable mechanism of rendering cyto-protection. SCBC has been able to reduce inflammation significantly in croton oil induced ear edema in both doses. Conclusions Thus, this study could form the basis for further study for the potential use of SCBC in oxidative stress associated cell death and inflammation.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiankang Fang ◽  
Xia Zhao ◽  
Shuai Li ◽  
Xingan Xing ◽  
Haitao Wang ◽  
...  

Abstract Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is one of the new therapeutic strategies for treating ischemic brain and heart tissues. However, the poor survival rate of transplanted BMSCs in ischemic tissue, due to high levels of reactive oxygen species (ROS), limits the therapeutic efficacy of this approach. Considering that BMSC survival may greatly enhance the effectiveness of transplantation therapy, development of effective therapeutics capable of mitigating oxidative stress-induced BMSC apoptosis is an important unmet clinical need. Methods BMSCs were isolated from the 4-week-old male Sprague Dawley rats by whole bone marrow adherent culturing, and the characteristics were verified by morphology, immunophenotype, adipogenic, and osteogenic differentiation potential. BMSCs were pretreated with artemisinin, and H2O2 was used to induce apoptosis. Cell viability was detected by MTT, FACS, LDH, and Hoechst 33342 staining assays. Mitochondrial membrane potential (ΔΨm) was measured by JC-1 assay. The apoptosis was analyzed by Annexin V-FITC/PI and Caspase 3 Activity Assay kits. ROS level was evaluated by using CellROX® Deep Red Reagent. SOD, CAT, and GPx enzymatic activities were assessed separately using Cu/Zn-SOD and Mn-SOD Assay Kit with WST-8, Catalase Assay Kit, and Total Glutathione Peroxidase Assay Kit. The effects of artemisinin on protein expression of BMSCs including p-Erk1/2, t-Erk1/2, p-c-Raf, p-p90rsk, p-CREB, BCL-2, Bax, p-Akt, t-Akt, β-actin, and GAPDH were measured by western blotting. Results We characterized for the first time the protective effect of artemisinin, an anti-malaria drug, using oxidative stress-induced apoptosis in vitro, in rat BMSC cultures. We found that artemisinin, at clinically relevant concentrations, improved BMSC survival by reduction of ROS production, increase of antioxidant enzyme activities including SOD, CAT, and GPx, in correlation with decreased Caspase 3 activation, lactate dehydrogenase (LDH) release and apoptosis, all induced by H2O2. Artemisinin significantly increased extracellular-signal-regulated kinase 1/2 (Erk1/2) phosphorylation, in a concentration- and time-dependent manner. PD98059, the specific inhibitor of the Erk1/2 pathway, blocked Erk1/2 phosphorylation and artemisinin protection. Similarly, decreased expression of Erk1/2 by siRNA attenuated the protective effect of artemisinin. Additionally, when the upstream activator KRAS was knocked down by siRNA, the protective effect of artemisinin was also blocked. These data strongly indicated the involvement of the Erk1/2 pathway. Consistent with this hypothesis, artemisinin increased the phosphorylation of Erk1/2 upstream kinases proto-oncogene c-RAF serine/threonine-protein kinase (c-Raf) and of Erk1/2 downstream targets p90 ribosomal s6 kinase (p90rsk) and cAMP response element binding protein (CREB). In addition, we found that the expression of anti-apoptotic protein B cell lymphoma 2 protein (BcL-2) was also upregulated by artemisinin. Conclusion These studies demonstrate the proof of concept of artemisinin therapeutic potential to improve survival in vitro of BMSCs exposed to ROS-induced apoptosis and suggest that artemisinin-mediated protection occurs via the activation of c-Raf-Erk1/2-p90rsk-CREB signaling pathway.


Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 1280-1289 ◽  
Author(s):  
Samantha A. Garside ◽  
Christopher R. Harlow ◽  
Stephen G. Hillier ◽  
Hamish M. Fraser ◽  
Fiona H. Thomas

Thrombospondin-1 (TSP-1) is a putative antiangiogenic factor, but its role in regulating physiological angiogenesis is unclear. We have developed a novel in vitro angiogenesis assay to study the effect of TSP-1 on follicular angiogenesis and development. Intact preantral/early antral follicles dissected from 21-d-old rat ovaries were cultured for 6 d in the presence or absence of TSP-1. At the end of the culture period, angiogenic sprouting from the follicles was quantified using image analysis. Follicles were fixed and sectioned, and follicular apoptosis was assessed by immunohistochemistry for activated caspase-3 in granulosa cells. The results showed that TSP-1 inhibited follicular angiogenesis (P < 0.01) and promoted follicular apoptosis (P < 0.001) in a dose-dependent manner. To determine whether the proapoptotic activity of TSP-1 is mediated by direct effects on granulosa cells, isolated granulosa cells were cultured with TSP-1 (0, 10, 100, and 1000 ng/ml) for 48 h. Apoptosis was quantified using a luminescent caspase-3/7 assay. TSP-1 promoted apoptosis of granulosa cells in a dose-dependent manner (P < 0.05), suggesting that TSP-1 can act independently of the angiogenesis pathway to promote follicular apoptosis. These results show that TSP-1 can both inhibit follicular angiogenesis and directly induce apoptosis of granulosa cells. As such, it may have potential as a therapeutic for abnormal ovarian angiogenesis and could facilitate the destruction of abnormal follicles observed in polycystic ovary syndrome.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Takashi Fujii ◽  
Shun Yamamuro ◽  
Masamichi Takahashi ◽  
Akihide Kondo ◽  
Yoshitaka Narita ◽  
...  

Abstract The therapeutic outcome of glioblastomas (GBMs) is still very poor. Therefore, invention of novel therapeutic methods against GBM cases is considered urgent. The antitumor effects of naturally-derived compounds are attracting attention recently, and therapeutic efficacy of curcumin, a plant-derived compound previously used for multiple purpose, has been indicated in many cancer systems; however, clinical application of curcumin is considered difficult because of its poor bioavailability (under 1 %). Curcumin monoglucuronide (CMG), a water-soluble prodrug of curcumin recently developed for overcoming this weakness, has been demonstrated excellent antitumor effects for several malignancies in vitro and in vivo; therefore, we investigated the effects of CMG against GBM cells. CMG induced cell death of human GBM cells lines (T98G, U251MG, and U87MG) by dose dependent manner by triggering multiple forms of cell death such as apoptosis and perthanatos. Immunoblotting of CMG-treated GBM cell lysates demonstrated activation of multiple cell death signaling. Furthermore, immunodeficiency mice harboring intracerebral U87MG cell xenografts systemically treated by CMG showed significantly prolonged survival compared with control mice. These results suggest CMG would be a novel therapeutic agent against GBM cases.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Hong-feng Zhang ◽  
Jia-hong Wang ◽  
Yan-li Wang ◽  
Cheng Gao ◽  
Yan-ting Gu ◽  
...  

Salvianolic acid A (SAA) is a bioactive polyphenol extracted from Salviae miltiorrhizae Bunge, which possesses a variety of pharmacological activities. In our previous study, we have demonstrated that SAA effectively attenuates kidney injury and inflammation in an established animal model of 5/6 nephrectomized (5/6Nx) rats. However, there has been limited research regarding the antioxidative effects of SAA on chronic kidney disease (CKD). Here, we examined the antioxidative effects and underlying mechanisms of SAA in 5/6Nx rats. The rats were injected with SAA (2.5, 5, and 10 mg·kg-1·d-1, ip) for 28 days. Biochemical, flow cytometry, and Western blot analyses showed that SAA significantly increased the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and catalase (CAT) and lowered the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and NADPH oxidase 4 (NOX-4) in a dose-dependent manner in 5/6Nx rats and in H2O2-induced HK-2 cells in vitro. Moreover, SAA enhanced the activation of the protein kinase B/glycogen synthase kinase-3β/nuclear factor-erythroid-2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathway in a dose-dependent manner and subsequently increased the expression of heme oxygenase-1 (HO-1) in the kidney of 5/6Nx rats, which were consistent with those obtained in H2O2-induced HK-2 cells in vitro shown by Western blot analysis. Furthermore, SAA significantly increased the expression of intranuclear Nrf2 and HO-1 proteins compared to HK-2 cells stimulated by LPS on the one hand, which can be enhanced by QNZ to some extent; on the other hand, SAA significantly lowered the expression of p-NF-κB p65 and ICAM-1 proteins compared to HK-2 cells stimulated by H2O2, which can be abrogated by ML385 to some extent. In conclusion, our results demonstrated that SAA effectively protects the kidney against oxidative stress in 5/6Nx rats. One of the pivotal mechanisms for the protective effects of SAA on kidney injury was mainly related with its antioxidative roles by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3641
Author(s):  
Tatsuya Kobayashi ◽  
Makoto Miyazaki ◽  
Nobuyoshi Sasaki ◽  
Shun Yamamuro ◽  
Eita Uchida ◽  
...  

To manage refractory and invasive glioblastomas (GBM)s, photodynamic therapy (PDT) using talaporfin sodium (NPe6) (NPe6-PDT) was recently approved in clinical practice. However, the molecular machineries regulating resistance against NPe6-PDT in GBMs and mechanisms underlying the changes in GBM phenotypes following NPe6-PDT remain unknown. Herein, we established an in vitro NPe6-mediated PDT model using human GBM cell lines. NPe6-PDT induced GBM cell death in a NPe6 dose-dependent manner. However, this NPe6-PDT-induced GBM cell death was not completely blocked by the pan-caspase inhibitor, suggesting NPe6-PDT induces both caspase-dependent and -independent cell death. Moreover, treatment with poly (ADP-ribose) polymerase inhibitor blocked NPe6-PDT-triggered caspase-independent GBM cell death. Next, it was also revealed resistance to re-NPe6-PDT of GBM cells and GBM stem cells survived following NPe6-PDT (NPe6-PDT-R cells), as well as migration and invasion of NPe6-PDT-R cells were enhanced. Immunoblotting of NPe6-PDT-R cells to assess the behavior of the proteins that are known to be stress-induced revealed that only ERK1/2 activation exhibited the same trend as migration. Importantly, treatment with the MEK1/2 inhibitor trametinib reversed resistance against re-NPe6-PDT and suppressed the enhanced migration and invasion of NPe6-PDT-R cells. Overall, enhanced ERK1/2 activation is suggested as a key regulator of elevated malignant phenotypes of GBM cells surviving NPe6-PDT and is therefore considered as a potential therapeutic target against GBM.


2010 ◽  
Vol 26 (5) ◽  
pp. 297-308 ◽  
Author(s):  
RM Satpute ◽  
J. Hariharakrishnan ◽  
R. Bhattacharya

Cyanide is a mitochondrial poison, which is ubiquitously present in the environment. Cyanide-induced oxidative stress is known to play a key role in mediating the neurotoxicity and cell death in rat pheochromocytoma (PC12) cells. PC12 cells are widely used as a model for neurotoxicity assays in vitro. In the present study, we investigated the protective effects of alpha-ketoglutarate (A-KG), a potential cyanide antidote, and N-acetyl cysteine (NAC), an antioxidant against toxicity of cyanide in PC12 cells. Cells were treated with various concentrations (0.625—1.25 mM) of potassium cyanide (KCN) for 4 hours, in the presence or absence of simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM). Cyanide caused marked decrease in the levels of cellular antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Lipid peroxidation indicated by elevated levels of malondialdehyde (MDA) was found to be accompanied by decreased levels of reduced glutathione (GSH) and total antioxidant status (TAS) of the cells. Cyanide-treated cells showed notable increase in caspase-3 activity and induction of apoptotic type of cell death after 24 hours. A-KG and NAC alone were very effective in restoring the levels of GSH and TAS, but together they significantly resolved the effects of cyanide on antioxidant enzymes, MDA levels, and caspase-3 activity. The present study reveals that combination of A-KG and NAC has critical role in abbrogating the oxidative stress-mediated toxicity of cyanide in PC12 cells. The results suggest potential role of A-KG and NAC in cyanide antagonism.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Anongporn Kobroob ◽  
Wachirasek Peerapanyasut ◽  
Nipon Chattipakorn ◽  
Orawan Wongmekiat

This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
TM Archana ◽  
K Soumya ◽  
Jesna James ◽  
Sudheesh Sudhakaran

Abstract Background Hyperglycemia is the hallmark of diabetes, and the associated oxidative stress is a major concern that invites an array of diabetic complications. The traditional practices of medicare are of great, current interest due to the high cost and side effects of conventional diabetic medications. The present in vitro study focuses on evaluating the potential of various A. occidentale root extracts for their antihyperglycemic and antioxidant potentials. Materials and methods The four different solvent extracts petroleum ether (PEAO), chloroform (CHAO), ethyl acetate (EAAO), and 80 % methanol (80 % MAO) of A. occidentale roots were evaluated for their total phenolic, flavonoid, and antioxidant capacity. Using MIN6 pancreatic β-cells, the cytotoxicity of the extracts was evaluated by MTT assay and the antidiabetic potential by quantifying the insulin levels by ELISA at a higher concentration of glucose. The effect of 80 % MAO on INS gene expression was determined by qRT PCR analysis. Results Among the four different solvent extracts of A. occidentale roots, 80 % MAO showed the highest concentration of phenolics (437.33 ± 0.03 µg GAE/mg), CHAO to be a rich source of flavonoids (46.04 ± 0.1 µg QE/mg) and with the highest total antioxidant capacity (1865.33 ± 0.09 µg AAE/ mg). Evaluation of the free radical scavenging and reducing properties of the extracts indicated 80 % MAO to exhibit the highest activity. The MTT assay revealed the least cytotoxicity of all four extracts. 80 % MAO enhanced INS up-regulation as well as insulin secretion even under high glucose concentration (27mM). Conclusions The present study demonstrated that the A. occidentale root extracts have effective antihyperglycemic and antioxidative properties, together with the potential of normalizing the insulin secretory system of β-cells. Above mentioned properties have to be studied further by identifying the active principles of A. occidentale root extracts and in vivo effects. The prospect of the present study is identifying drug leads for better management of diabetes from the A. occidentale root extracts. Graphical abstract


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Maitinuer Maiwulanjiang ◽  
Kevin Y. Zhu ◽  
Jianping Chen ◽  
Abudureyimu Miernisha ◽  
Sherry L. Xu ◽  
...  

Song Bu Li decoction (SBL) is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia) and heart disorders (arrhythmia and palpitation). Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS) formation. The transcriptional activity of antioxidant response element (ARE), as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF-) induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress.


2020 ◽  
Author(s):  
Zhenzhen Zhang ◽  
Chuandi Zhou ◽  
Deji Draga ◽  
lhamo Thashi ◽  
Zhi Zheng ◽  
...  

Abstract Background: LingqiHuangban Granule(LQHBG) is a famous traditional Chinese medicine formula used to manage retinal diseases, as an effective holistic treatment through warming Yang to exert tonifying effects on kidney and invigorating spleen to remove dampness to nourish essence of effect. The study examined protection of LQHBG on oxidative stress-induced injury in human retinal endothelial cells(HRECs) in vitro, determined the potential molecular targets of LQHBG using network pharmacology.Methods: The potential targets of active ingredients in LQHBG were predicted using pharmmapper. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out using Molecule Annotation System. The protein-protein interaction networks were constructed using Cytoscape. LQHBG was administered to rabbits to prepare medicated serum. The apoptosis of HRECs was evaluated by TUNEL and Flow Cytometry(FCM). MDA, SOD, LDH, GSH-Px, and T-AOC were detected. The mRNA expressions of Nrf2, NF-κB and HO-1 were detected, protein expression levels of Nrf2, Bcl-2, NF-κB, HO-1 and caspase-3 were analyzed.Results: TUNEL demonstrated the numbers of apoptotic cells in low-and high-dose LQHBG groups was obviously less than model group(P<0.05). FCM analysis revealed apoptotic rates of HRECs in low-and high-dose LQHBG groups were obviously reduced in a dose-dependent manner(P<0.05). The potential mechanism of LQHBG was the NF-κB pathway identified using PharmMapper. LQHBG significantly decreased MDA, LDH levels and enhanced SOD, GSH-Px and T-AOC generation. LQHBG inhibited upregulation of NF-κB, caspase-3 and enhanced Bcl-2, Nrf2, and HO-1 expression.Conclusion: LQHBG protected HRECs against oxidative-stress via suppression of apoptosis and elevation of antioxidant ability, which may involve activation of Nrf2/ARE/HO-1 pathway and inhibition of NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document