scholarly journals The protection of LingqiHuangban Granule on human retinal endothelial cells against oxidative stress-induced injury by network pharmacology

2020 ◽  
Author(s):  
Zhenzhen Zhang ◽  
Chuandi Zhou ◽  
Deji Draga ◽  
lhamo Thashi ◽  
Zhi Zheng ◽  
...  

Abstract Background: LingqiHuangban Granule(LQHBG) is a famous traditional Chinese medicine formula used to manage retinal diseases, as an effective holistic treatment through warming Yang to exert tonifying effects on kidney and invigorating spleen to remove dampness to nourish essence of effect. The study examined protection of LQHBG on oxidative stress-induced injury in human retinal endothelial cells(HRECs) in vitro, determined the potential molecular targets of LQHBG using network pharmacology.Methods: The potential targets of active ingredients in LQHBG were predicted using pharmmapper. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out using Molecule Annotation System. The protein-protein interaction networks were constructed using Cytoscape. LQHBG was administered to rabbits to prepare medicated serum. The apoptosis of HRECs was evaluated by TUNEL and Flow Cytometry(FCM). MDA, SOD, LDH, GSH-Px, and T-AOC were detected. The mRNA expressions of Nrf2, NF-κB and HO-1 were detected, protein expression levels of Nrf2, Bcl-2, NF-κB, HO-1 and caspase-3 were analyzed.Results: TUNEL demonstrated the numbers of apoptotic cells in low-and high-dose LQHBG groups was obviously less than model group(P<0.05). FCM analysis revealed apoptotic rates of HRECs in low-and high-dose LQHBG groups were obviously reduced in a dose-dependent manner(P<0.05). The potential mechanism of LQHBG was the NF-κB pathway identified using PharmMapper. LQHBG significantly decreased MDA, LDH levels and enhanced SOD, GSH-Px and T-AOC generation. LQHBG inhibited upregulation of NF-κB, caspase-3 and enhanced Bcl-2, Nrf2, and HO-1 expression.Conclusion: LQHBG protected HRECs against oxidative-stress via suppression of apoptosis and elevation of antioxidant ability, which may involve activation of Nrf2/ARE/HO-1 pathway and inhibition of NF-κB pathway.

2010 ◽  
Vol 104 (9) ◽  
pp. 1297-1303 ◽  
Author(s):  
Yan-Hong Huang ◽  
Qing-Hong Zhang

The present study was undertaken to investigate the antioxidant effect of chronic ingestion of genistein (Gen) against neural death in the brain of ovariectomised (Ovx) rats. The rats were randomly divided into five groups, i.e. sham-operated (sham), Ovx-only, Ovx with 17β-oestradiol, Ovx with low (15 mg/kg) and high (30 mg/kg) doses of Gen (Gen-L and Gen-H), and were orally administered daily with drugs or vehicle for 6 weeks. The learning and memory abilities were measured by Morris water maze test. Oxidative damages in the brain were evaluated by the level of superoxide dismutase (SOD), malondialdehyde (MDA) and monoamine oxidase (MAO) activities. Neural apoptosis was shown by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining and caspase-3 activity. In the visual learning and memory test, there were no significant differences among the population means of the five groups. While in the probe trial test, the Gen-L group instead of the Gen-H group exhibited reduced escape latency and increased memory frequency than the Ovx group. Although both doses of Gen could reduce acetylcholinesterase activity, only a low dose of Gen could diminish MDA activity significantly in frontal cortex and enhance SOD content in the hippocampus. In contrast, MAO content was decreased in the cortex by either dose of Gen, while in the hippocampus, only a high dose of Gen appeared to be effective. Interestingly, Gen at both the doses could attenuate the increased number of TUNEL-positive neurons and caspase-3 activity in Ovx rats. These results suggest that Gen confers protection against Ovx-induced neurodegeneration by attenuating oxidative stress, lipid peroxidation and the mitochondria-mediated apoptotic pathway in a region- and dose-dependent manner.


2018 ◽  
Vol 29 (6) ◽  
pp. 621-630
Author(s):  
Md. Imamul Islam ◽  
Meena Afroze Shanta ◽  
Milon Mondal ◽  
Nazia Hoque ◽  
Senjuti Majumder ◽  
...  

Abstract Background This study was designed to evaluate the free radical scavenging property of chloroform extract of the bark of Stereospermum chelonoides (SCBC) and to investigate its potential in Alzheimer’s disease and inflammation, two oxidative stress related disorders. Methods Preliminary phytochemical analysis and in vitro antioxidant potential of SCBC were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, ferric reducing antioxidant power (FRAP) assay, cupric reducing antioxidant capacity (CUPRAC) and total antioxidant capacity determination assay. Total phenol and total flavonoid contents were also determined. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based cytotoxicity and cyto-protective assays were performed on human neuroblastoma SH-SY5Y cells. Thioflavin-T assay and caspase activation measurement assay were carried out to elucidate the mechanism of cytoprotection of SCBC observed here. In vivo anti-inflammatory potential was measured using croton oil and xylene induced ear edema tests. Results Phytochemical screening of SCBC revealed the presence of various phytoconstituents. Dose-dependent in vitro antioxidant activity was observed. The extract was enriched in flavonoids and polyphenolic compounds too. SCBC was found to inhibit amyloid-β peptide 1-42 (Aβ42) induced cell death in a dose-dependent manner. Encouraged by the cyto-protective effect, its effects on Aβ42 fibrillogenesis and caspase-3 activated apoptosis were observed. SCBC significantly slowed down the Aβ42 fibrillogenesis and caspase-3 activation in a concentration-dependent manner indicating its probable mechanism of rendering cyto-protection. SCBC has been able to reduce inflammation significantly in croton oil induced ear edema in both doses. Conclusions Thus, this study could form the basis for further study for the potential use of SCBC in oxidative stress associated cell death and inflammation.


Author(s):  
Maurizio Gelati ◽  
Elena Corsini ◽  
Anna Dufour ◽  
Giorgio Massa ◽  
Sergio Giombini ◽  
...  

Objective:We investigated the in vitro effects of low- and high-dose methylprednisolone (MP) on the cytokine-induced expression of HLA-DR, ICAM-1 and VCAM-1 on human brain microvessel endothelial cells (HBMECs).Methods:Brain endothelium was obtained from microvessels included in the apparently normal white matter of surgical specimens of nine patients. Cells were stained with monoclonal antibodies anti-HLA-DR, anti-ICAM-1 and anti-VCAM-1 and analysed by flow cytometry as fluorescence histograms. The mean fluorescence intensity (MFI) of HBMECs treated with different stimuli was calculated.Results:3-IFN-induced HLA-DR was down-regulated in a dose-dependent manner by MP. High-dose MP reduced the TNF-3-induced ICAM-1 and VCAM-1 expression.Conclusion:The down-regulation of adhesion molecules on cerebral endothelial cells could decrease mononuclear cell transmigration through the blood brain barrier and consequently the perivascular infiltrates. The results add support to the rationale for high-dose MP treatment in multiple sclerosis relapses.


2021 ◽  
Vol 14 (10) ◽  
pp. 967
Author(s):  
Sibel Guzel ◽  
Charles L. Cai ◽  
Jacob V. Aranda ◽  
Kay D. Beharry

Aquaporins (AQPs) are important for regulating cellular water, solute transport, and balance. Recently, AQPs have also been recognized as playing a key role in cell migration and angiogenesis. In the retina, hypoxia induces vascular endothelial growth factor (VEGF), a potent angiogenic and vascular permeability factor, resulting in retinal edema, which is facilitated by AQPs. Bumetanide is a diuretic agent and AQP 1–4 blocker. We tested the hypothesis that bumetanide suppression of AQPs ameliorates intermittent hypoxia (IH)-induced angiogenesis and oxidative stress in human microvascular retinal endothelial cells (HMRECs). HMRECs were treated with a low-dose (0.05 µg/mL) or high-dose (0.2 µg/mL) of bumetanide and were exposed to normoxia (Nx), hyperoxia (50% O2), or IH (50% O2 with brief hypoxia 5% O2) for 24, 48, and 72 h. Angiogenesis and oxidative stress biomarkers were determined in the culture media, and the cells were assessed for tube formation capacity and AQP-1 and -4 expression. Both doses of bumetanide significantly decreased oxidative stress and angiogenesis biomarkers. This response was reflected by reductions in tube formation capacity and AQP expression. These findings confirm the role of AQPs in retinal angiogenesis. Therapeutic targeting of AQPs with bumetanide may be advantageous for IH-induced aberrant retinal development.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Wei Jin ◽  
Wei Xu ◽  
Jing Chen ◽  
Xiaoxiao Zhang ◽  
Chuancheng Ren

Abstract: Apoptosis antagonizing transcription factor (AATF) exerts an effect against oxidative stress, DNA damage and cellular apoptosis. However, its role in neuronal ischemia or hypoxia damage has not been elucidated yet. Present study investigated the neuroprotective roles and mechanisms of AATF under ischemia and hypoxia in vivo and in vitro. Focal cerebral ischemia of rat was generated by distal middle cerebral artery occlusion (dMCAO) model, SH-SY5Y cells were used to generate oxygen glucose deprivation (OGD) model in vitro. Western blot and immunofluorescent staining were used to investigate the expression changes of AATF. CCK-8 and LDH were performed to evaluate cellular survival and cytotoxicity. Overexpression and interference lentivirus vectors were performed to regulate the expression of AATF in SH-SY5Y cells. DHE staining that measured by flow cytometry was performed to investigate cellular superoxide anion levels. 8-OHdG expression and AP sites measurement were used to evaluate DNA damage. DNA Ladder and TUNEL staining were employed to evaluate DNA fragmentation. MNNG and DPQ were respectively used to agitate or antagonist caspase-3 independent PCD (programmed cell death) pathway, STS and Z-VAD-fmk were respectively used to agitate or antagonist caspase-3 dependent PCD pathway. Western blot was performed to investigate the expression of Poly(ADP-ribose) polymers (PAR) and apoptosis inducing factor (AIF) in different cellular components, Co-IP (co-immunoprecipitation) was used to test the interaction of AIF, H2AX and CypA (Cyclophilin A). We found that AATF was increased in cortical neurons after brain ischemia (P<0.001). Besides, AATF was upregulated in OGD-treated SH-SY5Y cells in a time-dependent manner (P=0.007). Additionally, overexpressing AATF ameliorated OGD-induced cellular death (P < 0.001) and cytotoxicity (P = 0.001), and AATF interference exacerbated OGD-induced cellular death (P=0.033) and cytotoxicity (P=0.006). We also found that AATF overexpression suppressed cellular DNA fragmentation (P=0.003) but did not ameliorate oxidative stress and DNA damage. Moreover, we discovered that overexpressing AATF suppressed PAR/AIF signaling pathway via binding with AIF.


2021 ◽  
Vol 11 (3) ◽  
pp. 466-470
Author(s):  
Zhiyong Liu ◽  
Cuiqing Ding ◽  
Changqing Yao ◽  
Jinhui Chen

To explore the effects and molecular mechanisms of sufentanil on high glucose-induced oxidative stress in and apoptosis of cardiomyocytes, cardiomyocytes H9c2 cells were classified into groups based on different treatments as high-glucose (HG), HG with low, medium, or high-dose sufentanil, HG with high-dose sufentanil and anti-miR-NC, HG with high-dose sufentanil and anti-miR-142-3p, and control. The cells’ superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were detected using respective kits. The apoptosis rate in each group was detected by flow cytometry. The expressions of cleaved caspase-3 and pro-caspase3 were determined using western blotting. The expression of miR-142-3p in cardiomyocytes was detected using real-time fluorescent quantitative PCR. Compared with the control group, the HG group had decreased SOD activity, pro-caspase-3 expression, and miR-142-3p expression and increased MDA content, apoptosis, and cleaved caspase-3 expression (P < 0.05). Compared with the HG group, the SOD activity and pro-caspase-3 expression increased and the MDA content, apoptosis rate, and cleaved caspase-3 expression decreased in HG cells treated with low, medium, or high-dose sufentanil. The expression of miR-142-3p was increased in a dose-dependent manner (P < 0.05). The interference of miR-142-3p reversed the effect of sufentanil on high glucose-induced oxidative stress in and apoptosis of cardiomyocytes. Sufentanil may inhibit high glucose-induced oxidative stress in and apoptosis of cardiomyocytes by upregulating miR-142-3p expression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 921-921
Author(s):  
Enriqueta Coll-Sangrona ◽  
Ali Amirkhosravi ◽  
Alshad S. Lalani ◽  
Liza Robles ◽  
Hina Desai ◽  
...  

Abstract Calcitriol, the hormonally-active metabolite of Vitamin D3, plays critical roles in calcium homeostasis, cell growth and differentiation, and immunoregulation. The anti-tumor activities of high-dose calcitriol have been demonstrated in a variety of preclinical models of solid tumors, leukemias and lymphomas. Recently, a new dose-intense formulation of calcitriol, termed DN-101 (Asentar™), was developed specifically for cancer therapy which allows for supraphysiological concentrations of calcitriol to be safely delivered in vivo to patients with cancer. In a recent Phase 2 clinical trial, DN-101 significantly increased overall survival and also reduced the incidence of thromboembolic events in men with androgen-independent prostate cancer receiving docetaxel-based chemotherapy. Based on previous observations we hypothesized that calcitriol’s anti-thrombotic effects in vivo may be due to the downregulation of Tissue Factor (TF) antigen and activity and/or upregulation of Thrombomodulin (TM). To test this hypothesis, we incubated A549 lung carcinoma, A375-C15 metastatic melanoma, THP-1 monocytic leukemia, and Eahy926 endothelial cells with increasing concentrations of calcitriol for 24 hrs. For TF induction, tumor cells were stimulated with TNFα for 5 hrs and activity was measured by a clotting assay and a thrombin generation assay (TGA). TM activity was measured by a chromogenic assay. TF and TM surface antigen were assessed by flow cytometry. Calcitriol prevented the induction of TF in TNFα-stimulated THP-1 cells in a dose-dependent manner (from 33% at 1 nM to 94% at 100 nM) as evidenced by a prolongation of plasma clotting time, a decrease in endogenous thrombin potential (ETP), and a reduction of surface TF antigen. In addition, the activity and surface expression of TM on THP-1 cells was increased significantly (40% and 3-fold respectively, P < 0.01) following 100 nM calcitriol treatment. Similarly, in TNFα-stimulated melanoma cells, calcitriol prevented the induction of TF activity (from 26% at 1 nM to 60% at 1 μM) and expression in a dose-dependent manner. High-dose calcitriol treatment also increased melanoma cell TM activity between 8% and 62%. In contrast, constitutively expressed TF activity and antigen were less affected by calcitriol in A549 lung carcinoma cells (12 to 28% reduction at concentrations between 1–100 nM) whilst TM activity and antigen were unaffected. In comparison to the tumor cells, calcitriol had no significant effect on TM or TF activity or antigen in TNFα-stimulated EAhy926 endothelial cells. In conclusion, we have demonstrated that high concentrations of calcitriol inhibit the induction of surface TF expression and upregulates TM in multiple tumor cell lines in vitro. The degree of the inhibition is proportional to the extent of TF induction by TNF-α. These in vitro results provide further support for the anticoagulant properties associated with high concentrations of calcitriol and may provide a rationale for understanding the lower incidence of thromboembolic complications observed in patients with metastatic prostate cancer treated with DN-101.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiankang Fang ◽  
Xia Zhao ◽  
Shuai Li ◽  
Xingan Xing ◽  
Haitao Wang ◽  
...  

Abstract Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is one of the new therapeutic strategies for treating ischemic brain and heart tissues. However, the poor survival rate of transplanted BMSCs in ischemic tissue, due to high levels of reactive oxygen species (ROS), limits the therapeutic efficacy of this approach. Considering that BMSC survival may greatly enhance the effectiveness of transplantation therapy, development of effective therapeutics capable of mitigating oxidative stress-induced BMSC apoptosis is an important unmet clinical need. Methods BMSCs were isolated from the 4-week-old male Sprague Dawley rats by whole bone marrow adherent culturing, and the characteristics were verified by morphology, immunophenotype, adipogenic, and osteogenic differentiation potential. BMSCs were pretreated with artemisinin, and H2O2 was used to induce apoptosis. Cell viability was detected by MTT, FACS, LDH, and Hoechst 33342 staining assays. Mitochondrial membrane potential (ΔΨm) was measured by JC-1 assay. The apoptosis was analyzed by Annexin V-FITC/PI and Caspase 3 Activity Assay kits. ROS level was evaluated by using CellROX® Deep Red Reagent. SOD, CAT, and GPx enzymatic activities were assessed separately using Cu/Zn-SOD and Mn-SOD Assay Kit with WST-8, Catalase Assay Kit, and Total Glutathione Peroxidase Assay Kit. The effects of artemisinin on protein expression of BMSCs including p-Erk1/2, t-Erk1/2, p-c-Raf, p-p90rsk, p-CREB, BCL-2, Bax, p-Akt, t-Akt, β-actin, and GAPDH were measured by western blotting. Results We characterized for the first time the protective effect of artemisinin, an anti-malaria drug, using oxidative stress-induced apoptosis in vitro, in rat BMSC cultures. We found that artemisinin, at clinically relevant concentrations, improved BMSC survival by reduction of ROS production, increase of antioxidant enzyme activities including SOD, CAT, and GPx, in correlation with decreased Caspase 3 activation, lactate dehydrogenase (LDH) release and apoptosis, all induced by H2O2. Artemisinin significantly increased extracellular-signal-regulated kinase 1/2 (Erk1/2) phosphorylation, in a concentration- and time-dependent manner. PD98059, the specific inhibitor of the Erk1/2 pathway, blocked Erk1/2 phosphorylation and artemisinin protection. Similarly, decreased expression of Erk1/2 by siRNA attenuated the protective effect of artemisinin. Additionally, when the upstream activator KRAS was knocked down by siRNA, the protective effect of artemisinin was also blocked. These data strongly indicated the involvement of the Erk1/2 pathway. Consistent with this hypothesis, artemisinin increased the phosphorylation of Erk1/2 upstream kinases proto-oncogene c-RAF serine/threonine-protein kinase (c-Raf) and of Erk1/2 downstream targets p90 ribosomal s6 kinase (p90rsk) and cAMP response element binding protein (CREB). In addition, we found that the expression of anti-apoptotic protein B cell lymphoma 2 protein (BcL-2) was also upregulated by artemisinin. Conclusion These studies demonstrate the proof of concept of artemisinin therapeutic potential to improve survival in vitro of BMSCs exposed to ROS-induced apoptosis and suggest that artemisinin-mediated protection occurs via the activation of c-Raf-Erk1/2-p90rsk-CREB signaling pathway.


2021 ◽  
Author(s):  
Patrick Brice Defo Deeh ◽  
Madankumar Arumugam ◽  
Karthik Alagarsamy ◽  
Gayathri Karanam ◽  
Nagabhishek Sirpu Natesh ◽  
...  

Abstract Purpose Phyllanthus muellerianus (PM) and Ficus exasperata (FE) are plants used against cancers. We evaluated the phytochemical profiles and in vitro antioxidant potentials of PM and FE, and investigate their effects on cell proliferation, intracellular calcium ([Ca2+]i), caspases 3/9, apoptosis, oxidative stress markers, and Bax/cytochrome C expression in PC-3 cells. Methods The phytochemical profiles were evaluated by liquid chromatography-mass spectrometry (LC-MS), and the antioxidant by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging method. The cells were incubated for 24 hours with 3% tween 80, paclitaxel (5 nM), PM (800 and 1200 µg/ml), and FE (800 and 1200 µg/ml). After treatments, [Ca2+]i, caspases 3/9, apoptosis and oxidative stress parameters were measured using colorimetric kits, while the mRNA levels of Bax and cytochrome C were quantified by RT‐qPCR. Results Nitidine, phloridzin and linoleic acid were identified in PM, while docosane, cardanol and chlorogenic acid were revealed in FE. The in vitro antioxidant potential of PM was greater than that of FE. Both plants inhibited the growth of PC-3 cells in a dose-dependent manner, but significantly (p<0.5-0.001) increased [Ca2+]i, apoptosis level, caspase 3/9 activities, reactive oxygen species production and lipid peroxidation, compared with control. Moreover, the activities of superoxide dismutase, catalase and glutathione peroxidase were significantly decreased in the cells incubated with the plant extracts, PM being the most effective. Paclitaxel, PM and FE upregulated Bax and cytochrome C genes in PC-3 cells. Conclusion PM and FE inhibited the growth of PC-3 cells by modulating the [Ca2+]i and inducing apoptosis through Bax/Cytochrome C/Caspase 3-9 signaling pathway.


2020 ◽  
Author(s):  
Ardeshir Abbasi ◽  
Nafiseh Pakravan ◽  
Zuhair Hassan

Abstract Background and Purpose: Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. Conversely, elevated levels of ROS-induced oxidative stress can induce cancer cell death. However, some anti-oxidative or ROS-mediated oxidative therapies have also yielded beneficial effects.Experimental approach: To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, H2O2 [10-1000μM], was used as a ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle.Key Results: Our results indicate that treatment of cancer cells with H2O2+HA was significantly more effective than H2O2 alone. In addition, treatment with H2O2+HA led to increased apoptosis, decreased proliferation, and multi-phase cell cycle arrest in 4T1 cells in a dose-dependent manner under normoxic or hypoxic conditions. Also, migratory tendency and the mRNA levels of VEGF, and MMP-2,9 were significantly decreased. Of note, HA treatment combined with 100-1000μM H2O2+ caused more damage to MNCs as compared to treatment with lower concentrations [10-50μM]. Based on these results we propose to administer high dose H2O2+HA [100-1000μM] for intra-tumoral injection and low doses for systemic administration.Conclusions & Implications: Intra-tumoral route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document