CO-OFDM System with 16-QAM Subcarrier Modulation Using Reconfigurable Optical Add Drop Multiplexer

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Aruna Rani ◽  
Manjit Singh Bhamrah ◽  
Sanjeev Dewra

AbstractIn this paper, sixteen 50 GHz spaced orthogonal frequency division multiplexing channels at 10 Gbps has been investigated with reconfigurable optical add drop multiplexer based on digital optical switch. The effects of fiber link length and input optical signal power on bit error rate, quality factor, output signal power, optical signal to noise ratio at the receiving side are observed. It is observed that maximal transmission distance of 2,100 km is achieved with an input optical power of −8 dBm.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruhin Chowdhury ◽  
A. K. M. Sharoar Jahan Choyon

Abstract A comprehensive design is proposed for the free-space optical (FSO) communication system by hybridizing circular polarization division multiplexing (CPDM) with coherent optical orthogonal frequency division multiplexing (CO-OFDM) and its performance is investigated realistically under diverse turbulent weather conditions of Bangladesh. Here, we consider Gamma–Gamma distribution for the turbulent FSO channel model. Moreover, the proposed scheme presents an excellent performance since the CPDM technique not only maximizes the link capacity of the FSO system but also enhances the spectral efficiency of the system. Besides, multipath fading, which is appeared during the FSO transmission, is significantly mitigated by OFDM modulation. The outcomes from the simulation confirm the advantages of the proposed hybrid scheme and also it can serve as a reference for the FSO application even in turbulent weather conditions. Performance analysis of the proposed model is described in terms of the optical power spectrum, optical signal-to-noise ratio, bit error rate, Q factor, constellation diagrams, and eye diagrams.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rabiu Imam Sabitu ◽  
Nafizah Goriman Khan ◽  
Amin Malekmohammadi

AbstractThis report examines the performance of a high-speed MDM transmission system supporting four nondegenerate spatial modes at 10 Gb/s. The analysis adopts the NRZ modulation format to evaluate the system performance in terms of a minimum power required (PN) and the nonlinear threshold power (PTH) at a BER of 10−9. The receiver sensitivity, optical signal-to-noise ratio, and the maximum transmission distance were investigated using the direct detection by employing a multimode erbium-doped amplifier (MM-EDFA). It was found that by properly optimizing the MM-EDFA, the system performance can significantly be improved.


2021 ◽  
Author(s):  
Mohammad Nazrul Islam

There are three dominant noise mechanisms in an analog optical fiber link. These are shot noise that is proportional to the mean optical power, relative intensity noise (RIN) that is proportional to the square of the instanteaneous optical power. This report describes an adaptive noise cancellation of these dominant noise processes that persist an analog optical fiber link. The performance of an analog optical fiber link is analyzed by taking the effects of these noise processes. Analytical and simulation results show that some improvement in signal to noise ratio (SNR) and this filter is effective to remove noise adaptively from the optical fiber link.


2019 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Kulwinder Singh ◽  
Manjeet Singh Patterh ◽  
Manjit Singh Bhamrah

Abstract In this paper, dual-order bidirectional pumping schemes of distributed fiber Raman amplifier are compared with standard first-order pumping in wavelength division multiplexed optical transmission systems. The novel comparison analysis is carried out in terms of Optical signal-to-noise ratio and Q-factor, on-off gain and noise figure by varying optical input power and fiber lengths. The results indicate that dual-order schemes present 0.02 dB higher OSNR and 5 dB higher Q-factor in comparison to first-order pumping when input optical power is varied from −4 to 5 dBm. Similarly, there is 4 dB higher on-off gain with dual order comparatively to first order when fiber length varied from 10 to 100 km. However, there is degradation in noise figure and Q-factor due to DRBS noise with dual-order pumping when fiber length from 10 to 100 km. Further, the signal power evolutions along fiber length show that there is 5 dBm improvement for 100 km fiber. The novelty of the work is that comparative analysis exhibits improvement in OSNR, on-off gain and Q-factor using dual-order bidirectional pumping.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Asmaa Benieddi ◽  
Sid Ahmed Elahmar

AbstractDirect detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems for a long-reach of standard single mode fiber (SSMF) require a large length of cyclic prefix (CP) to avoid the inter-symbol interference (ISI) effect caused by group velocity dispersion (GVD). Unfortunately, this method is inefficient due to the energy wasted in CP samples. In order to reduce the CP length and to mitigate the residual ISI, a novel blind adaptive channel shortening equalizer (CSE) is proposed in this paper. Based on the orthogonality between subcarriers in the fast Fourier transform (FFT) property, the proposed algorithm attempts to minimize the sum-squared correlation (SSCM) between each sample located in a well-defined window to update the CSE coefficients. Thus, the combined channel-CSE response is shortened. Therefore, it can cancel the residual ISI effect due to the GVD and the short CP length. The performance of the system is evaluated on basis of bit error rate (BER) versus optical signal to noise ratio (OSNR) for different CP lengths. The simulation results validate the new algorithm SSCM and show that it can reduce the CP length with a much better system improvement than existing algorithms.


Author(s):  
Fakhriy Hario P ◽  
Adhi Susanto ◽  
I Wayan Mustika ◽  
Sevia M Idrus ◽  
Sholeh Hadi P

Nonlinearity is one major problem broadband communication faced on utilizing the high capacity of optical fibers. That is due to scattering  phenomenon, which results in the deviations of wavelengths and energies. The dithering method is applied in the attempt to reduce those scatterings. In this paper, we propose the performance of a dithering technique based new system OFDM-RoF using two modulator scheme and coherent detection to alleviate the characteristics nonlinearity applied on the system. The dithering technique inputs signal externally to the signal processing systems to eliminate the effects of nonlinearity. Here, we report the performance of a dithering technique based on the OFDM-RoF, the results our experiment showed that the applied dithering with 16 QAM modulation can make the system more reliable and increases  the power level 1.55% with 193.1 THz, 2% with  100 THz and 1.99% ~ 200 THz, the best condition are with f<sub>d</sub> &lt; f<sub>c</sub>. However, all condition close proximity in the parameters OLP (optical launch power), BER and SER measurement. The result demonstrated a high efficiency and good power in which the OLP operated 6.396 dBm / 4.361 E-3 W~fd 200 THz, 3.578 dBm / 2.279 E-3 W~fd 193.1 THz and 6.420 dBm / 4.3384 E-3 W~100 THz. The best BER value is achieved at 0.33 and SER 0.78 at 5 km~f<sub>d</sub> 100 THz, 0.33 and 0.768 for 10 km~fd 193.1 THz, 0.478 and 0.92 for 50 km~fd 193.1 THz.


Author(s):  
Noor J. Jihad ◽  
Sinan M. Abdul Satar

In this article, different forms of optical orthogonal frequency division multiplexing (OFDM) were observed which were suitable for optical camera communication (OCC) systems. This research aims to establish the bit error rate (BER) versus signal-to-noise ratio (SNR) of the OCC system. This research will focus on OCC systems and the design that produces the noise of the clipping but will gain SNR as a whole if an optimum clipping factor is chosen. The BER versus SNR analysis was investigated for the different clipping factors 0.7, 1.4, and 2.6. The BER performance of the asymmetrically clipped optical OFDM (ACO-OFDM) was also compared with the direct current optical OFDM (DCO-OFDM) to show the suitable effectiveness of the proposed approach. ACO-OFDM was considered to be better due to lower bit loading, but DCO-OFDM was efficient for higher SNR values. This was because the DC bias used was inefficient in terms of optical capacity, while ACO-OFDM used only half of the subcarriers to transmit the information. Moreover, ACO-OFDM two-dimensional half-subcarriers of mapping rule would introduce the clipping noise to its unused 2D subcarriers, although further data can be provided by the 2D DCO-OFDM mapping rule.


2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Harsimranjit Singh Gill ◽  
Kamaljit Singh Bhatia ◽  
Sandeep Singh Gill

AbstractIn this paper, security issues for optical orthogonal frequency division multiplexed (OFDM) systems are emphasized. The encryption has been done on the data of coded OFDM symbols using data encryption standard (DES) algorithm before transmitting through the fiber. The results obtained justify that the DES provides better security to the input data without further bandwidth requirement. The data is transmitted to a distance of 1,000 km in a single-mode fiber with 16-quadrature amplitude modulation. The peak-to-average power ratio and optical signal-to-noise ratio of secure coded OFDM signal is fairly better than the conventional OFDM signal.


Author(s):  
Yazan Alkhlefat ◽  
Sevia Mahdaliza Idrus Sutan Nameh ◽  
Farabi M. Iqbal

Current and future wireless communication systems are designed to achieve the user’s demands such as high data rate and high speed with low latency and simultaneously to save bandwidth and spectrum. In 5G and 6G networks, a high speed of transmitting and switching is required for internet of things (IoT) applications with higher capacity. To achieve these requirements a semiconductor optical amplifier (SOA) is considered as a wavelength converter to transmit a signal with an orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM). It exploits the subcarrier’s power in conventional OFDM block in order to send additional bits beside the normally transmitted bits. In this paper, we optimized the SOA’s parameters to have efficient wavelength conversion process. These parameters are included the injection current (IC) of SOA, power of pump and probe signals. A 7 Gbps OFDM-SPM signal with a millimeter waves (MMW) carrier of 80 GHz is considered for signal switching. The simulation results investigated and analyzed the performance of the designed system in terms of error vector magnitude (EVM), bit error rate (BER) and optical signal-to-noise ratio (OSNR). The optimum value of IC is 0.6 A while probe power is 9.45 and 8.9 dBm for pump power. The simulation is executed by virtual photonic integrated (VPI) software.


Sign in / Sign up

Export Citation Format

Share Document