Role of nutrition in preventing insulin resistance in children

Author(s):  
Annalisa Blasetti ◽  
Simone Franchini ◽  
Laura Comegna ◽  
Giovanni Prezioso ◽  
Francesco Chiarelli

AbstractNutrition during prenatal, early postnatal and pubertal period is crucial for the development of insulin resistance and its consequences. During prenatal period fetal environment and nutrition seems to interfere with metabolism programming later in life. The type of dietary carbohydrates, glycemic index, protein, fat and micronutrient content in maternal nutrition could influence insulin sensitivity in the newborn. The effects of lactation on metabolism and nutritional behavior later in life have been studied. Dietary habits and quality of diet during puberty could prevent the onset of a pathological insulin resistance through an adequate distribution of macro- and micronutrients, a diet rich in fibers and vegetables and poor in saturated fats, proteins and sugars. We want to overview the latest evidences on the risk of insulin resistance later in life due to both nutritional behaviors and components during the aforementioned periods of life, following a chronological outline from fetal development to adolescence.

2011 ◽  
Vol 14 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Alexander Yur'evich Mayorov

This review focuses on the mechanisms of impaired sensitivity to insulin associated withevolution of carbohydrate metabolism disorders from enhanced fasting glycemia (EFG) to impaired glucose tolerance (IGT) and type 2 diabetes.Disturbances of glucose utilization at the receptor and post-receptor levels are considered along with the role of glucose and lipotoxicity. Original dataon insulin resistance (IR) in patients with disorders of carbohydrate metabolism are presented. Insulin sensitivity in DM2, EFG and IGT is shownto be 50, 25 and 15% lower respectively than in normal subjects. M-index positively correlates with BMI and quality of metabolic control (HbA1cand triglyceride levels). The differences in clinical and biochemical characteristics of DM2 patients are analysed depending on the degree of IR.Adiponectin and resistin levels in DM2 are shown to be lower than in healthy subjects while TNF-a and proinsulin levels increase. Therapy withmetformin, pyoglitazone, and insulin improves insulin sensitivity even in patients with early disturbances of carbohydrate metabolism. It is concludedthat intensive hypoglycemic therapy should be initiated before marked deterioration of insulin sensitivity developed.


2013 ◽  
Vol 217 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Sandra Pereira ◽  
Wen Qin Yu ◽  
María E Frigolet ◽  
Jacqueline L Beaudry ◽  
Yaniv Shpilberg ◽  
...  

We have shown in rats that sodium salicylate (SS), which inhibits IkBa kinase B (IKKB), prevents hepatic and peripheral insulin resistance caused by short-term (7 h) i.v. administration of Intralipid and heparin (IH). We wished to further determine whether this beneficial effect of SS persisted after prolonged (48 h) IH infusion, which better mimics the chronic free fatty acid (FFA) elevation of obesity. Hence, we performed hyperinsulinemic euglycemic clamps with tritiated glucose methodology to determine hepatic and peripheral insulin sensitivity in rats infused with saline, IH, IH and SS, or SS alone. SS prevented peripheral insulin resistance (P<0.05) caused by prolonged plasma FFA elevation; however, it did not prevent hepatic insulin resistance. In skeletal muscle, protein levels of phospho-IkBa were augmented by prolonged IH administration and this was prevented by SS, suggesting that IH activates while SS prevents the activation of IKKB. Markers of IKKB activation, namely protein levels of phospho-IkBa and IkBa, indicated that IKKB is not activated in the liver after prolonged FFA elevation. Phosphorylation of serine 307 at insulin receptor substrate (IRS)-1, which is a marker of proximal insulin resistance, was not altered by IH administration in the liver, suggesting that this is not a site of hepatic insulin resistance in the prolonged lipid infusion model. Our results suggest that the role of IKKB in fat-induced insulin resistance is time and tissue dependent and that hepatic insulin resistance induced by prolonged lipid elevation is not due to an IRS-1 serine 307 kinase.


2013 ◽  
Vol 125 (11) ◽  
pp. 501-511 ◽  
Author(s):  
Valérie Lebrun ◽  
Olivier Molendi-Coste ◽  
Nicolas Lanthier ◽  
Christine Sempoux ◽  
Patrice D. Cani ◽  
...  

Alcohol consumption is a major cause of liver disease. It also associates with increased cardiovascular risk and Type 2 diabetes. ALD (alcoholic liver disease) and NAFLD (non-alcoholic fatty liver disease) share pathological features, pathogenic mechanisms and pattern of disease progression. In NAFLD, steatosis, lipotoxicity and liver inflammation participate to hepatic insulin resistance. The aim of the present study was to verify the effect of alcohol on hepatic insulin sensitivity and to evaluate the role of alcohol-induced steatosis and inflammation on glucose homoeostasis. C57BL/6J mice were fed for 20 days a modified Lieber–DeCarli diet in which the alcohol concentration was gradually increased up to 35% of daily caloric intake. OH (alcohol liquid diet)-fed mice had liver steatosis and inflammatory infiltration. In addition, these mice developed insulin resistance in the liver, but not in muscles, as demonstrated by euglycaemic–hyperinsulinaemic clamp and analysis of the insulin signalling cascade. Treatment with the PPAR-α (peroxisome-proliferator-activated receptor-α) agonist Wy14,643 protected against OH-induced steatosis and KC (Kupffer cell) activation and almost abolished OH-induced insulin resistance. As KC activation may modulate insulin sensitivity, we repeated the clamp studies in mice depleted in KC to decipher the role of macrophages. Depletion of KC using liposomes-encapsuled clodronate in OH-fed mice failed both to improve hepatic steatosis and to restore insulin sensitivity as assessed by clamp. Our study shows that chronic alcohol consumption induces steatosis, KC activation and hepatic insulin resistance in mice. PPAR-α agonist treatment that prevents steatosis and dampens hepatic inflammation also prevents alcohol-induced hepatic insulin resistance. However, KC depletion has little impact on OH-induced metabolic disturbances.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 127 ◽  
Author(s):  
Federica Vinciguerra ◽  
Andrea Tumminia ◽  
Roberto Baratta ◽  
Alfredo Ferro ◽  
Salvatore Alaimo ◽  
...  

Obesity represents a major risk factor for metabolic disorders, but some individuals, “metabolically healthy” (MHO), show less clinical evidence of these complications, in contrast to “metabolically unhealthy” (MUO) individuals. The aim of this cross-sectional study is to assess the prevalence of the MHO phenotype in a cohort of 246 overweight/obese Italian children and adolescents, and to evaluate their characteristics and the role of insulin resistance. Homeostasis model assessment–insulin resistance (HOMA-IR), insulin sensitivity index (ISI), insulinogenic index (IGI) and disposition index (DI) were all calculated from the Oral Glucose Tolerance Test (OGTT). MHO was defined by either: (1) HOMA-IR < 2.5 (MHO-IRes), or (2) absence of the criteria for metabolic syndrome (MHO-MetS). The MHO prevalence, according to MHO-MetS or MHO-IRes criteria, was 37.4% and 15.8%, respectively. ISI was the strongest predictor of the MHO phenotype, independently associated with both MHO-IRes and MHO-MetS. The MHO-MetS group was further subdivided into insulin sensitive or insulin resistant on the basis of HOMA-IR (either < or ≥ 2.5). Insulin sensitive MHO-MetS patients had a better metabolic profile compared to both insulin resistant MHO-MetS and MUO-MetS individuals. These data underscore the relevance of insulin sensitivity to identifying, among young individuals with overweight/obesity, the ones who have a more favorable metabolic phenotype.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise E. Lackey ◽  
Felipe C. G. Reis ◽  
Roi Isaac ◽  
Rizaldy C. Zapata ◽  
Dalila El Ouarrat ◽  
...  

Abstract Insulin resistance is a key feature of obesity and type 2 diabetes. PU.1 is a master transcription factor predominantly expressed in macrophages but after HFD feeding PU.1 expression is also significantly increased in adipocytes. We generated adipocyte specific PU.1 knockout mice using adiponectin cre to investigate the role of PU.1 in adipocyte biology, insulin and glucose homeostasis. In HFD-fed obese mice systemic glucose tolerance and insulin sensitivity were improved in PU.1 AKO mice and clamp studies indicated improvements in both adipose and liver insulin sensitivity. At the level of adipose tissue, macrophage infiltration and inflammation was decreased and glucose uptake was increased in PU.1 AKO mice compared with controls. While PU.1 deletion in adipocytes did not affect the gene expression of PPARg itself, we observed increased expression of PPARg target genes in eWAT from HFD fed PU.1 AKO mice compared with controls. Furthermore, we observed decreased phosphorylation at serine 273 in PU.1 AKO mice compared with fl/fl controls, indicating that PPARg is more active when PU.1 expression is reduced in adipocytes. Therefore, in obesity the increased expression of PU.1 in adipocytes modifies the adipocyte PPARg cistrome resulting in impaired glucose tolerance and insulin sensitivity.


2019 ◽  
Vol 20 (9) ◽  
pp. 2109 ◽  
Author(s):  
Arulkumar Nagappan ◽  
Jooyeon Shin ◽  
Myeong Ho Jung

Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Britta Noebauer ◽  
Alexander Jais ◽  
Jelena Todoric ◽  
Klaus Gossens ◽  
Hedwig Sutterlüty-Fall ◽  
...  

Obesity is a major risk factor for several diseases including diabetes, heart disease, and some forms of cancer and due to its rapidly increasing prevalence it has become one of the biggest problems medicine is facing today. All the more surprising, a substantial percentage of obese patients are metabolically healthy when classified based on insulin resistance and systemic inflammation. Oxysterols are naturally occurring molecules that play important role in various metabolic and inflammatory processes and their levels are elevated in patients suffering from obesity and diabetes. 25-Hydroxycholesterol (25-OHC) is produced in cells from cholesterol by the enzyme cholesterol 25-hydroxylase (Ch25h) and is involved in lipid metabolism, inflammatory processes, and cell proliferation. Here, we investigated the role of hepatic Ch25h in the transition from metabolically healthy obesity to insulin resistance and diabetes. Using several different experimental approaches, we demonstrated the significance of Ch25h on the border of “healthy” and “diseased” states of obesity. Adenovirus-mediated Ch25h overexpression in mice improved glucose tolerance and insulin sensitivity and lowered HOMA-IR. Our data suggest that low hepatic Ch25h levels could be considered a risk marker for unhealthy obesity.


Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5261-5274 ◽  
Author(s):  
M. A. Carvalho-Filho ◽  
B. M. Carvalho ◽  
A. G. Oliveira ◽  
D. Guadagnini ◽  
M. Ueno ◽  
...  

Abstract The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr−/− and Pkr+/+ mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr−/− mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr−/− mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.


Sign in / Sign up

Export Citation Format

Share Document