Somatotype, Body Composition and Explosive Power of Athlete and Non-Athlete

2014 ◽  
Vol 5 (1) ◽  
pp. 26-34
Author(s):  
Saha Sukanta

Abstract The aim of this study was to identify the effect of somatotype and body composition variables on leg explosive power of college level men students. The sample consisted of 500 young college students, divided into two groups: athletes (N= 250) undergoing Bachelor of Physical Education course whose mean age 23.86 ± 0.36 years; and non-athletes (N= 250) college students who do not take part regular physical activities and mean age 22.16 ± 0.88 years. The somatotype was assessed using the Heath & Carter method. Assessing body composition of the subject various anthropometric measurements were taken. Sargent vertical jump test was used to measure leg explosive power. The measures were compared between the two groups using the Student t-test for independent samples. The two groups differed significantly (p≤0.01) in terms of body weight, % body fat, lean body mass, % skeletal muscle mass and somatotype. The findings of the present study showing that athlete have higher mean values in leg explosive power (p≤0.01) than non-athlete. The leg explosive power was positively significantly (p≤0.01) correlated with % skeletal muscle mass, lean body mass, mesomorphy and ectomorphy components of somatotype; on the other hand body weight, height, % body fat, body surface area and endomorphy component of somatotype significantly (p≤0.01) negatively correlated. In conclusion, somatotype and body composition variables are important factors in determining leg explosive power.

2016 ◽  
Vol 41 (6) ◽  
pp. 611-617 ◽  
Author(s):  
Jameason D. Cameron ◽  
Ronald J. Sigal ◽  
Glen P. Kenny ◽  
Angela S. Alberga ◽  
Denis Prud’homme ◽  
...  

There has been renewed interest in examining the relationship between specific components of energy expenditure and the overall influence on energy intake (EI). The purpose of this cross-sectional analysis was to determine the strongest metabolic and anthropometric predictors of EI. It was hypothesized that resting metabolic rate (RMR) and skeletal muscle mass would be the strongest predictors of EI in a sample of overweight and obese adolescents. 304 post-pubertal adolescents (91 boys, 213 girls) aged 16.1 (±1.4) years with body mass index at or above the 95th percentile for age and sex OR at or above the 85th percentile plus an additional diabetes risk factor were measured for body weight, RMR (kcal/day) by indirect calorimetry, body composition by magnetic resonance imaging (fat free mass (FFM), skeletal muscle mass, fat mass (FM), and percentage body fat), and EI (kcal/day) using 3 day food records. Body weight, RMR, FFM, skeletal muscle mass, and FM were all significantly correlated with EI (p < 0.005). After adjusting the model for age, sex, height, and physical activity, only FFM (β = 21.9, p = 0.007) and skeletal muscle mass (β = 25.8, p = 0.02) remained as significant predictors of EI. FFM and skeletal muscle mass also predicted dietary protein and fat intake (p < 0.05), but not carbohydrate intake. In conclusion, with skeletal muscle mass being the best predictor of EI, our results support the hypothesis that the magnitude of the body’s lean tissue is related to absolute levels of EI in a sample of inactive adolescents with obesity.


2011 ◽  
Vol 106 (S1) ◽  
pp. S57-S59 ◽  
Author(s):  
Kathryn E. Michel ◽  
Wendy Anderson ◽  
Carolyn Cupp ◽  
Dorothy P. Laflamme

Body condition scoring (BCS) systems primarily assess body fat. Both overweight and underweight animals may have loss of lean tissue that may not be noted using standard BCS systems. Catabolism of lean tissue can occur rapidly, may account for a disproportionate amount of body mass loss in sick cats and can have deleterious consequences for outcome. Therefore, along with evaluation of body fat, patients should undergo evaluation of muscle mass. The aims of the present study were first to evaluate the repeatability and reproducibility of a 4-point feline muscle mass scoring (MMS) system and second to assess the convergent validity of MMS by dual-energy X-ray absorptiometry (DXA). MMS was as follows: 3, normal muscle mass; 2, slight wasting; 1, moderate wasting; 0, severe wasting. For the first aim, forty-four cats were selected for evaluation based on age and BCS, and for the second aim, thirty-three cats were selected based on age, BCS and MMS. Cats were scored by ten different evaluators on three separate occasions. Body composition was determined by DXA. Inter- and intra-rater agreement were assessed using kappa analysis. Correlation between MMS and BCS, age, percentage lean body mass and lean body mass (LBM) was determined using Spearman's rank-order correlation. The MMS showed moderate inter-rater agreement in cats that scored normal or severely wasted (κ = 0·48–0·53). Intra-rater agreement was substantial (κ = 0·71–0·73). The MMS was significantly correlated with BCS (r 0·76, P < 0·0001), age (r − 0·75, P < 0·0001), LBM (g) (r 0·62, P < 0·0001) and percentage LBM (r − 0·49, P < 0·0035). Additional investigation is needed to determine whether the MMS can be refined and to assess its clinical applicability.


Author(s):  
Verawati Sudarma ◽  
Lukman Halim

Background<br />Low vitamin D has been associated with various health problems. Aging influences body composition, especially body fat and fat-free mass. Anthropometric measurements, such as body weight (BW), body mass index (BMI), body fat (BF), skeletal muscle mass (SMM), waist circumference (WC) and the waist-height ratio (WHtR) represent body composition which many studies proposed will influence serum vitamin D [25(OH)D]. The objective of the present study was to determine which anthropometric measurements were determinants of 25(OH)D levels in elderly.<br /><br />Methods<br />A cross-sectional study was conducted involving 126 elderly (&gt;60 years old) men and women at Pusat Santunan Dalam Keluarga (PUSAKA) Central Jakarta centers. Anthropometric measurements [body mass index (BMI), skeletal muscle mass (SMM), body fat (BF), and waist circumference (WC)] were determined by bioelectrical impedance analysis using the Omron body composition monitor with scales (HBF-375, Omron, Japan). Fasting blood samples were taken to measure 25(OH)D level by electrochemiluminescence immunoassay. Multivariate linear regression was used to analyze the data.<br /><br />Results <br />The data showed that BMI, BF, and WC were higher than recommended, while SMM and serum 25(OH)D were lower. When the analysis was done based on sex, there were significant differences in BF, SMM, WHtR, and serum 25(OH)D. In the linear regression multivariate analysis of log 25(OH)D with age and body anthropometric measurements, only SMM reached significance level (β=0.019; p=0.025).<br /><br />Conclusions<br />This study demonstrated a positive association between skeletal muscle mass and serum levels of vitamin D in elderly.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 589-589
Author(s):  
Julie Jones ◽  
Sujatha Rajaram ◽  
Celine Heskey ◽  
Rawiwan Sirirat ◽  
Abigail Clarke ◽  
...  

Abstract Objectives We sought to assess the effect of daily consumption of macadamia nuts as 15% of calories on body weight, BMI, waist circumference, percent body fat and skeletal muscle mass in overweight/obese men and women with elevated cardiometabolic risk. Methods Utilizing a randomized crossover design, we randomized 38 subjects to consume macadamia nuts daily as 15% of calories for 8 weeks (intervention) and their usual diet for 8 weeks (control), with a 2-week washout. Three subjects dropped out early; n = 35 for analysis. Subjects were healthy men and postmenopausal women with a BMI of 25–39, a waist circumference of &gt;101.6 cm for men and &gt;88.9 cm for women, and one additional cardiovascular risk factor (fasting plasma glucose &gt;100 mg/dL, triglycerides ≥150 mg/dl, total cholesterol &gt;200 mg/dL, LDL-C &gt; 100 mg/dL, blood pressure ≥130/85 mmHg or taking anti-hypertensive medication). Macadamia nuts were provided in pre-weighed daily portions as 15% of calories calculated using the Mifflin-St. Jeor equation. Percent body fat and skeletal muscle mass (kg) were determined by bioelectrical impedance analysis. A mixed model analysis was performed with treatment, sequence, phase, and baseline values as fixed-effect terms and subjects as a random-effects term. Results Compared to control, consumption of macadamia nuts led to a mean weight change of –348 g (84.13 vs. 83.78 kg; P = 0.15) a mean BMI change of –0.15 kg/m2 (30.61 vs. 30.47 kg/m2; P = 0.12), and a mean waist circumference change of 0.17 cm (107.41 vs. 107.58 cm; P = 0.61). Percent body fat increased by an average of 0.26% after eating nuts (42.70 vs. 42.96%; P = 0.16). Skeletal muscle mass was slightly but significantly lower after eating nuts with a mean change of –0.237 kg (26.33 vs. 26.09 kg; P = 0.017). Conclusions Daily consumption of high-fat macadamia nuts for eight weeks in overweight and obese individuals did not change anthropometrics including body weight, BMI, waist circumference, and % body fat. Skeletal muscle mass was slightly lowered but likely not clinically relevant. Funding Sources Hort Innovation, Sydney, Australia.


Author(s):  
Adam W. Powell ◽  
Samuel G. Wittekind ◽  
Tarek Alsaied ◽  
Adam M. Lubert ◽  
Clifford Chin ◽  
...  

Background Adults with a Fontan circulation tend to have myopenia and elevated adiposity when measured by dual energy x‐ray absorptiometry. Bioelectrical impedance analysis is an alternative validated approach to assess body composition. We used bioelectrical impedance analysis to compare body composition between pediatric patients with a Fontan circulation and control individuals without heart disease. Methods and Results A retrospective chart review identified all patients aged <22 years with a Fontan circulation who presented for cardiopulmonary exercise testing and bioelectrical impedance analysis from April 2019 to January 2020. Data were compared with control subjects tested during the same period. We studied 47 patients with a Fontan circulation (53% boys; 15±3.1 years) and 165 controls (48% boys; 14.4±2.5 years). Fontan status was associated with shorter height, but similar age, sex, and overall body mass. Patients with Fontan had lower lean body mass (−12.0±22%, Z‐score −0.5±1, P =0.005), skeletal muscle mass (−13.6±1.4%; Z‐score, −0.5±1; P =0.004), skeletal muscle indexed to height (−10.3±13.3%; Z‐score, −0.5±1; P =0.005), and higher percent body fat (+13.8±18.6%; Z‐score, 0.4±1.2; P =0.03). Greater skeletal muscle mass was associated with higher peak oxygen consumption ( r 2 =0.52, P <0.0001) and oxygen pulse ( r 2 =0.68, P <0.0001). Patients who had suffered a late complication (ie, heart transplant referral or evidence of extracardiac organ dysfunction) of the Fontan operation (13 of 47, 27.7%) had lower skeletal muscle mass ( P =0.048) and higher body fat percentage ( P =0.003). Conclusions The Fontan circulation is associated with marked myopenia and increased adiposity. Higher muscle mass was associated with better exercise capacity. Fontan complications are associated with lower muscle mass and increased adiposity.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9992
Author(s):  
Petr Kutáč ◽  
David Zahradnik ◽  
Miroslav Krajcigr ◽  
Václav Bunc

Volleyball is an exceedingly popular physical activity in the adolescent population, especially with females. The study objective was to assess the effect of volleyball training and natural ontogenetic development on the somatic parameters of adolescent girls. The study was implemented in a group of 130 female volleyball players (aged 12.3 ± 0.5 – 18.1 ± 0.6 years) along with 283 females from the general population (aged 12.3 ± 0.5 – 18.2 ± 0.5 years). The measured parameters included: body height (cm), body mass (kg), body fat (kg, %), visceral fat (cm2), body water (l), fat free mass (kg) and skeletal muscle mass (kg, %). Starting at the age of 13, the volleyball players had significantly lower body fat ratio and visceral fat values than those in the general population (p < 0.001 in body fat % and p < 0.01 in visceral fat). In volleyball players, the mean body fat (%) values were 17.7 ± 6.6 in 12-year-old players, 16.7 ± 4.9 in 13-year-old players, 18.5 ± 3.9 in 16-year-old players, and 19.3 ± 3.1 in 18-year-old players. In the general population, the mean body fat (%) values were 19.6 ± 6.3 in 12-year-old girls, 21.7 ± 6.4 in 13-year-old girls, 23.4 ± 6.1 in 16-year-old girls, and 25.8 ± 7.0 in 18-year-old girls. The visceral fat (cm2) mean values were 36.4 ± 19.3 in 12-year-old players, 39.2 ± 16.3 in 13-year-old players, 45.7 ± 14.7 in 16-year-old players, and 47.2 ± 12.4 in 18-year-old players. In the general population, the mean visceral fat (cm2) values were 41.4 ± 21.1 in 12-year-old girls, 48.4 ± 21.5 in 13-year-old girls, 58.0 ± 24.7 in 16-year-old girls, and 69.1 ± 43.7 in 18-year-old girls. In volleyball players, lower body fat ratio corresponded with a higher skeletal muscle mass ratio. The differences found in skeletal muscle mass ratio were also significant starting at the age of 13 (p < 0.001). The mean skeletal muscle mass (%) values were 44.1 ± 3.4 in 12-year-old volleyball players, 45.4 ± 2.5 in 13-year-old players, 45.0 ± 2.2 in 16-year-old players, and 44.7 ± 1.8 in 18-year-old players. In the general population, the mean skeletal muscle mass (%) values were 42.8 ± 3.2 in 12-year-old girls, 42. ± 4.1 in 13-year-old girls, 41.9 ± 3.3 in 16-year-old girls, and 40.6 ± 3.7 in 18-year-old girls. Differences in body composition between the individual age groups were similar between the volleyball players and girls in the general population. The results indicate that regular volleyball training influences the body composition of young females however the development of body composition parameters is subject to their ontogenetic development.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2266
Author(s):  
Neda Haghighat ◽  
Damoon Ashtary-Larky ◽  
Reza Bagheri ◽  
Alexei Wong ◽  
Neda Cheraghloo ◽  
...  

(1) Background: The favorable effects of high protein snacks on body composition and appetite status in lean and athletic populations have been illustrated previously. However, the effects of soy-enriched high protein snacks have not been investigated in women with normal-weight obesity (NWO). Consequently, we aimed at comparing the effects of six months of soy-enriched high protein snack replacement on appetite, body composition, and dietary intake in women with NWO. (2) Methods: One hundred seven (107) women with NWO [(age: 24 ± 3 yrs, BMI: 22.7 ± 2.3 kg/m2, body fat percentage (BFP): 38 ± 3.2%)] who were assigned to one of two groups; high protein snack (HP, n = 52) containing 50 g soybean or isocaloric low-protein snack (protein: 18.2 g, carbohydrate: 15 g, fat: 10 g, energy: 210 kcal) or isocaloric low protein snack (LP, n = 55) containing 3.5 servings of fruit (protein: <2 g, carbohydrate: ≈50 g, fat: <1 g, energy: ≈210 kcal) as part of their daily meals (as a snack at 10 a.m.), successfully completed the study interventions. Body mass (BM), body mass index (BMI), waist circumference (WC), BFP, skeletal muscle mass, dietary intake, and appetite levels were evaluated prior to and after the six-month intervention. (3) Results: Appetite (HP = −12 mm and LP = −0.6 mm), energy intake (HP = -166.2 kcal/day and LP = 91.3 kcal), carbohydrate intake (HP = −58.4 g/day and LP = 6.4 g/day), WC (HP = −4.3 cm and LP = −0.9 cm), and BFP (HP = −3.7% and LP = −0.9%) were significantly (p < 0.05) reduced, while skeletal muscle mass (HP = 1.2 kg and LP = 0.3 kg) significantly increased in the HP compared to the LP group, respectively. (4) Conclusions: Six months of a soy-enriched high protein snack replacement decreased appetite and improved body composition in women with NWO. Our findings suggest that soy-enriched high protein snacks are an efficacious strategy for body composition improvement.


Author(s):  
Milivoj Dopsaj ◽  
Ilona Judita Zuoziene ◽  
Radoje Milić ◽  
Evgeni Cherepov ◽  
Vadim Erlikh ◽  
...  

The paper addresses relations between the characteristics of body composition in international sprint swimmers and sprint performance. The research included 82 swimmers of international level (N = 46 male and N = 36 female athletes) from 8 countries. We measured body composition using multifrequency bioelectrical impedance methods with “InBody 720” device. In the case of male swimmers, it was established that the most important statistically significant correlation with sprint performance is seen in variables, which define the quantitative relationship between their fat and muscle with the contractile potential of the body (Protein-Fat Index, r = 0.392, p = 0.007; Index of Body Composition, r = 0.392, p = 0.007; Percent of Skeletal Muscle Mass, r = 0.392, p = 0.016). In the case of female athletes, statistically significant relations with sprint performance were established for variables that define the absolute and relative amount of a contractile component in the body, but also with the variables that define the structure of body fat characteristics (Percent of Skeletal Muscle Mass, r = 0.732, p = 0.000; Free Fat Mass, r = 0.702, p = 0.000; Fat Mass Index, r = −0.642, p = 0.000; Percent of Body Fat, r = −0.621, p = 0.000). Using Multiple Regression Analysis, we managed to predict swimming performance of sprint swimmers with the help of body composition variables, where the models defined explained 35.1 and 75.1% of the mutual variability of performance, for male and female swimmers, respectively. This data clearly demonstrate the importance of body composition control in sprint swimmers as a valuable method for monitoring the efficiency of body adaptation to training process in order to optimize competitive performance.


2014 ◽  
Vol 116 (12) ◽  
pp. 1605-1613 ◽  
Author(s):  
Richard V. Clark ◽  
Ann C. Walker ◽  
Robin L. O'Connor-Semmes ◽  
Michael S. Leonard ◽  
Ram R. Miller ◽  
...  

Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine ( methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [ n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects ( r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA.


Sign in / Sign up

Export Citation Format

Share Document