scholarly journals Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia

2016 ◽  
Vol 53 (6) ◽  
pp. 12-20 ◽  
Author(s):  
G. Klavs ◽  
J. Rekis

Abstract The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).

2021 ◽  
Vol 18 (1-2) ◽  
pp. 124-142
Author(s):  
Kathrin Böhling ◽  
Maria Fernanda Marques Todeschini

Abstract From 2021 onwards, forests and forestry will for the first time contribute to the European Union’s climate action targets. The new Land Use, Land Use Change & Forestry (lulucf) Regulation commits Member States to achieve carbon neutrality on the basis of an EU-wide system. The system accounts for carbon sequestered and emitted from forests and other land uses like crop- and wetland. What looks like a significant step in the Union’s climate policy framework, however, leaves the large potential of Europe’s forest sector for climate mitigation untapped. The present article draws this conclusion from a comprehensive analysis of 67 documents related to decision-making on the lulucf Regulation. It reveals coalitional politics and the salience of the Commission’s behavior as key to explain the Regulation’s limited scope and concludes with assessing the future role of forests in the Union’s climate policy framework.


2017 ◽  
Vol 114 (48) ◽  
pp. 12833-12838 ◽  
Author(s):  
D. Richard Cameron ◽  
David C. Marvin ◽  
Jonathan M. Remucal ◽  
Michelle C. Passero

Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacities to meet the emissions reduction targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. We examine the scale of contributions from selected activities in natural and agricultural lands and assess the degree to which these actions could help the state achieve its 2030 and 2050 climate mitigation goals under alternative implementation scenarios. By 2030, an Ambitious implementation scenario could contribute as much as 147 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state’s 2030 goal, greater than the individual projected contributions of four other economic sectors, including those from the industrial and agricultural sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.9 MMTCO2e⋅y−1 or 13.4% of the state’s 2030 reduction goal. Most reductions come from changes in forest management (61% of 2050 projected cumulative reductions under the Ambitious scenario), followed by reforestation (14%), avoided conversion (11%), compost amendments to grasslands (9%), and wetland and grassland restoration (5%). Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes.


2018 ◽  
Vol 10 (3) ◽  
pp. 671-686 ◽  
Author(s):  
Ines Navarro González ◽  
Blanca Jiménez Cisneros ◽  
Nidya Aponte Hernández ◽  
Raquel Montes Rojas

Abstract The management of wastewater is the fifth largest single source of CH4 emissions and the sixth of N2O. Options to improve sanitation within the Morelos State in Mexico were compared applying a modification of the IPCC guidelines to estimate greenhouse gas (GHG) emissions. A 2030 business-as-usual scenario which considers current sanitation practices and 2010 baseline-scenario, showed that septic tanks, the main state option for sanitation, were the principal source of emissions, even higher than from non-controlled wastewater discharges. These scenarios also revealed that the two metropolitan areas were key in terms of mitigation as they contributed 88% of the total GHG emissions. For the 2030A scenario (sanitation + adaptation), it was seen that if the policy of septic tank usage continues, and the existing wastewater treatment plants (WWTPs) are rehabilitated, the GHG emissions would be reduced by 2% compared to the business-as-usual (BAU) scenario. In contrast, if a policy were adopted considering in addition mitigation measures, 26% GHG emissions reduction might be achieved. Additional co-benefits will be obtained in several sectors, including health (diarrheal and dengue diseases control), agriculture, and the environment, performing a more efficient and integrated management of water and achieving savings on the operating costs of WWTPs through co-generation.


FACETS ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 334-357
Author(s):  
Robert Newell ◽  
Lenore Newman ◽  
Mathew Dickson ◽  
Bill Vanderkooi ◽  
Tim Fernback ◽  
...  

This research explores the potential hydroponic systems have for contributing to climate mitigation in fodder agriculture. Using British Columbia (BC) and Alberta as case studies, the study compares greenhouse gas (GHG) emissions and carbon sequestration potential of hydroponically grown sprouted barley fodder to conventional barley grain fodder. GHG emissions were examined through scenarios that assumed Alberta to be the main barley producer, while exploring different situations of BC and Alberta as consumers, distributed/centralized hydroponic systems, and renewable/nonrenewable energy. Carbon sequestration opportunities were examined through scenarios that explored the land sparing potential of transitioning from conventional to hydroponic barley and shifts from tillage to no-tillage practices. Sensitivity analyses were done to examine how changes in hydroponic seed-to-fodder output and energy consumption affect the systems’ climate mitigation potential. The results indicated that incorporating hydroponic systems into barley production has the potential to reduce GHG emissions, given seed-to-fodder output and energy consumption are maintained at certain levels and the systems are powered by renewable energy. Results also showed that hydroponic farming can provide greater carbon sequestration opportunities than simply shifting to no-tillage farming. The research indicates that hydroponic fodder farming could contribute to climate mitigation objectives if complemented with effective energy and land use policies.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 324
Author(s):  
Joana Monjardino ◽  
Luís Dias ◽  
Patrícia Fortes ◽  
Hugo Tente ◽  
Francisco Ferreira ◽  
...  

Air pollution and climate change are closely interlinked, once both share common emission sources, which mainly arise from fuel combustion and industrial processes. Climate mitigation actions bring co-benefits on air quality and human health. However, specific solutions can provide negative trade-offs for one side. The Portuguese Carbon Neutrality Roadmap was developed to assess conceivable cost-effective pathways to achieve zero net carbon emissions by 2050. Assessing its impacts, on air pollutant emissions, is the main focus of the present work. The bottom-up linear optimization energy system the integrated MARKAL-EFOM system (TIMES) model was selected as a modeling tool for the decarbonization scenarios assessment. The estimation of air pollutant emissions was performed exogenously to the TIMES model. Results show that reaching net zero greenhouse gas (GHG) emissions is possible, and technologically feasible, in Portugal, by 2050. The crucial and most cost-effective vector for decarbonizing the national economy is the end-use energy consumption electrification, renewable based, across all end-use sectors. Decarbonization efforts were found to have strong co-benefits for reducing air pollutant emissions in Portugal. Transport and power generation are the sectors with the greatest potential to reduce GHG emissions, providing likewise the most significant reductions of air pollutant emissions. Despite the overall positive effects, there are antagonistic effects, such as the use of biomass, mainly in industry and residential sectors, which translates into increases in particulate matter emissions. This is relevant for medium term projections, since results show that, by 2030, PM2.5 emissions are unlikely to meet the emission reduction commitments set at the European level, if no additional control measures are considered.


Author(s):  
Rawshan Ara Begum

Deforestation causes up to 10% of global anthropogenic carbon emissions. Reducing emissions from deforestation and degradation and enhancing forest carbon stocks can contribute to controlling greenhouse gas (GHG) emissions and limit global warming and climate change. However, global warming cannot be limited without decreasing the use of fossil fuel or emission-intensive energy sources. The forestry sector could contribute 7%–25% of global emissions reduction by 2020. Apart from emissions reduction and sink (mitigation), forests also provide cobenefits such as ecosystem services (providing food, timber, and medicinal herbs); biodiversity conservation; poverty reduction; and water quality, soil protection, and climate regulation. In 2005, the UNFCCC introduced a cost-effective mitigation strategy to reduce emissions from deforestation (RED) in developing countries. The UN’s initiative to reduce emissions from deforestation and forest degradation (REDD+) aims to transform forest management in developing countries, where the majority of tropical forests are located, using finances from developed countries. REDD+ seeks to reward actors for maintaining or restoring forests, acting as an economic instrument by putting a monetary value on every tonne of CO2 that is prevented from entering the atmosphere. Implementation of REDD+ requires economic and policy instruments that can help to control GHG emissions by enhancing carbon sinks, reducing deforestation and forest degradation, and managing sustainable forests. Payment for environmental services offers opportunities for either cofinancing or economic valuation in regard to REDD+ implementation. The challenge is to identify the most appropriate and cost-effective instrument. REDD+ fulfills the current needs for economic instruments and incentives that can be implemented with existing land use and forestry policies to control global GHG emissions. However, REDD+ requires forest governance, law enforcement, clarification of land and resource rights, and forest monitoring to work in the long term. REDD+ payments can be made for results-based actions, and the UNFCCC has identified potential ways to pay for them, but challenges remain, such as clarifying financing or funding sources, distribution of funding and sharing of benefits or incentives, carbon rights, and so on. Different aspects pf the implementation, effectiveness, and scale of REDD+ and their interactions with economic, social, and environmental benefits are important for successful REDD+ implementation.


2020 ◽  
Author(s):  
Jack Walton ◽  
Matthias Kuhnert ◽  
Khadiza Begum ◽  
Mohammed Abdul Kader ◽  
Marta Dondini ◽  
...  

<p>In order to limit global warming to 2°C, a variety of mitigation measures are needed, including those that result in net negative emissions. Soil carbon sequestration (SCS) through changed land management practices has the potential to help meet this need, but it requires further study to represent a viable policy option. Rice cultivation plays a major role in South Asian agriculture, accounting for almost 40% of the crop’s harvested area worldwide. Its greenhouse gas (GHG) profile means it contributes disproportionately more than other crops to the region’s emissions. Adapting rice system management for SCS may therefore represent a compelling mitigation opportunity for the agricultural sectors of South Asian countries. This study uses a process-based modelling approach to compare the performance of two models, ECOSSE and DAYCENT, in assessing the mitigation potential of increasing soil organic carbon (SOC) stocks on a Bangladeshi test site under rice cultivation. A previous study using DAYCENT showed an increase in SOC stock as well as an overall GHG emissions reduction for several management practices relative to the baseline scenario. ECOSSE, calibrated to the same measurements, also showed an increase in SOC and net emissions reduction relative to the baseline. However, the models differed significantly in the extent of mitigation predicted as well as the GHG emissions profile. Given these differences, further analysis is needed to reduce error and uncertainty in these models. The results of this study form a basis for spatial model approaches to assess the mitigation potential of rice production in Bangladesh.</p>


1998 ◽  
Vol 3 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Michael Lavender ◽  
Neil Craig ◽  
Ron Kerr ◽  
Denise Howel

Objectives: To investigate the benefit of carotid endarterectomy relative to medical treatment, by comparing the outcome for different groups of patients following transient ischaemic attacks. Methods: A Markov model was used to describe the survival and quality of life of patients treated for a transient ischaemic attack. The benefit is measured in terms of quality adjusted life months (QALMs). The outcome was estimated using a computer simulation with parameters based on published studies on the probability of events following treatment. The benefit of carotid endarterectomy was explored using a baseline set of parameters and a sensitivity analysis. Results: The baseline scenario of a 65-year-old male patient with the model factors set at an intermediate level showed a benefit for surgery of 3 QALMs compared with medical treatment alone. The sensitivity analysis showed that the most favourable combination of factors had a benefit of 13.4 QALMs and the least favourable a loss of 2 QALMs. Of all 128 factor combinations, 79.9% showed a benefit for surgery, 5.5% showed equal benefit, and 15.6% showed a benefit for medical treatment. Conclusions: Computer simulations have the potential for deriving estimates of benefit for different patient groups from the results of clinical trials. Combined with reliable information on costs, the technique could also demonstrate variations in cost-effectiveness for these groups. For patients following a transient ischaemic attack, the results from this simulation and limited cost information suggest that carotid endarterectomy is unlikely to be a cost-effective intervention in the UK for many patient groups despite a reduction in the risk of stroke.


2011 ◽  
Vol 102 (16) ◽  
pp. 7457-7465 ◽  
Author(s):  
Andrea Zamboni ◽  
Richard J. Murphy ◽  
Jeremy Woods ◽  
Fabrizio Bezzo ◽  
Nilay Shah

2013 ◽  
Vol 291-294 ◽  
pp. 3004-3013
Author(s):  
Ding Ma ◽  
Li Ning Wang ◽  
Wen Ying Chen

At a time of increased international concern and negotiation for GHG emissions reduction, country studies on the underlying effects of GHG growth gain importance. China experienced continuous, rapid economic growth over the past. At the same time, energy consumption and CO2 emissions increased rapidly while the energy intensity and carbon intensity showed a downward trend at country level. What factors were driving this change? What measures can be adopted to ensure the continual decrease of energy intensity and carbon intensity? The refined IDA method is employed in this paper to identify the impact of each factor. A year-by-year decomposition is carried out at sector level, and various interesting results on the underlying effects are found. The results yield important hints for the planning of energy and climate policy.


Sign in / Sign up

Export Citation Format

Share Document