scholarly journals А Меаsuring Method for Gyro-Free Determination of the Parameters of Moving Objects

2016 ◽  
Vol 23 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Dimitar Dichev ◽  
Hristofor Koev ◽  
Totka Bakalova ◽  
Petr Louda

Abstract The paper presents a new method for building measuring instruments and systems for gyro-free determination of the parameters of moving objects. To illustrate the qualities of this method, a system for measuring the roll, pitch, heel and trim of a ship has been developed on its basis. The main concept of the method is based, on one hand, on a simplified design of the base coordinate system in the main measurement channel so as to reduce the instrumental errors, and, on the other hand, on an additional measurement channel operating in parallel with the main one and whose hardware and software platform makes possible performing algorithms intended to eliminate the dynamic error in real time. In this way, as well as by using suitable adaptive algorithms in the measurement procedures, low-cost measuring systems operating with high accuracy under conditions of inertial effects and whose parameters (intensity and frequency of the maximum in the spectrum) change within a wide range can be implemented.

2014 ◽  
Vol 14 (5) ◽  
pp. 263-269 ◽  
Author(s):  
Dimitar Dichev ◽  
Hristofor Koev ◽  
Totka Bakalova ◽  
Petr Louda

Abstract The present paper considers a new measurement concept of modeling measuring instruments for gyro-free determination of the parameters of moving objects. The proposed approach eliminates the disadvantages of the existing measuring instruments since it is based, on one hand, on a considerably simplified mechanical module, and on the other hand, on the advanced achievements in the area of nanotechnologies, microprocessor and computer equipment. A specific measuring system intended for measuring the trim, heel, roll, and pitch of a ship has been developed in compliance with the basic principles of this concept. The high dynamic accuracy of this measuring system is ensured by an additional measurement channel operating in parallel with the main channel. The operating principle of the additional measurement channel is based on an appropriate correction algorithm using signals from linear MEMS accelerometers. The presented results from the tests carried out by means of stand equipment in the form of a hexapod of six degrees of freedom prove the effectiveness of the proposed measurement concept


2014 ◽  
Vol 14 (4) ◽  
pp. 183-189 ◽  
Author(s):  
D. Dichev ◽  
H. Koev ◽  
T. Bakalova ◽  
P. Louda

Abstract The present paper considers a new model for the formation of the dynamic error inertial component. It is very effective in the analysis and synthesis of measuring instruments positioned on moving objects and measuring their movement parameters. The block diagram developed within this paper is used as a basis for defining the mathematical model. The block diagram is based on the set-theoretic description of the measuring system, its input and output quantities and the process of dynamic error formation. The model reflects the specific nature of the formation of the dynamic error inertial component. In addition, the model submits to the logical interrelation and sequence of the physical processes that form it. The effectiveness, usefulness and advantages of the model proposed are rooted in the wide range of possibilities it provides in relation to the analysis and synthesis of those measuring instruments, the formulation of algorithms and optimization criteria, as well as the development of new intelligent measuring systems with improved accuracy characteristics in dynamic mode.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


2016 ◽  
Vol 23 (4) ◽  
pp. 555-565 ◽  
Author(s):  
Dimitar Dichev ◽  
Hristofor Koev ◽  
Totka Bakalova ◽  
Petr Louda

AbstractThe paper considers an algorithm for increasing the accuracy of measuring systems operating on moving objects. The algorithm is based on the Kalman filter. It aims to provide a high measurement accuracy for the whole range of change of the measured quantity and the interference effects, as well as to eliminate the influence of a number of interference sources, each of which is of secondary importance but their total impact can cause a considerable distortion of the measuring signal. The algorithm is intended for gyro-free measuring systems. It is based on a model of the moving object dynamics. The mathematical model is developed in such a way that it enables to automatically adjust the algorithm parameters depending on the current state of measurement conditions. This makes possible to develop low-cost measuring systems with a high dynamic accuracy. The presented experimental results prove effectiveness of the proposed algorithm in terms of the dynamic accuracy of measuring systems of that type.


Author(s):  
Qikai Wang ◽  
Aiqin Yao ◽  
Manouchehr Shokri ◽  
Adrienn A. Dineva

Henry’s constants for different existing compounds in water have great importance in transfer calculations. Measurement of these constants face different difficulties including high costs of experiment and low accuracy of measurement apparatus. Due to these facts, proposing a low cost and accurate approach becomes highlighted. To this end, adaptive neuro-fuzzy inference system (ANFIS) and least squares support vector machine (LSSVM) have been used as Henry’s constant predictor tools. The molecular structure of compounds has been used as inputs of models. After training the models, the visual and mathematical studies of outputs have been done. The coefficients of determination of LSSVM and ANFIS algorithms are 0.999 and 0.990 respectively. According to the comprehensiveness of databank and accurate prediction of algorithms, it can be concluded that LSSVM and ANFIS algorithms are accurate methods for prediction of Henry’s constant in wide range of chemical structure of compounds in water.


2015 ◽  
Vol 15 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Dimitar Dichev ◽  
Hristofor Koev ◽  
Totka Bakalova ◽  
Petr Louda

Abstract One of the most complex problems in measuring equipment is related to the provision of the required dynamic accuracy of measuring systems determining the parameters of moving objects. The present paper views an algorithm for improving the dynamic accuracy of such measuring systems. It is based on the Kalman method. The algorithm aims to eliminate the influence of a number of interference sources, each of which is of secondary significance. However, their total effect can cause considerable distortion of the measurement signal. The algorithm model is designed for gyro-free measuring systems. It is based on one of the most widely used elements in the dynamic systems, namely the physical pendulum, due to which measuring systems of high dynamic accuracy and low cost can be developed. The presented experimental results confirm the effectiveness of the proposed algorithm with respect to the dynamic accuracy of measuring systems of this type.


2016 ◽  
Vol 3 (2) ◽  
pp. 102
Author(s):  
Ahyuna Ahyuna ◽  
Irmawati Irmawati

IQ merupakan pengelompokan kecerdasan manusia, untuk mengetahui kecerdasan seseorang berbagai macam alat ukur yang digunakan diantaranya adalah tes inteligensi, tes emosional, tes spiritual, psikotes dan alat ukur lainnya. Semakin tinggi semangat orang untuk meraih sukses, semakin tinggi pula kebutuhan akan modal intelektual, emosional, psikologis, minat dan bakat. Segala kemampuan tersebut bisa jadi merupakan bakat terpendam dalam diri yang belum tergali, ataupun bakat yang harus dimunculkan dengan berbagai latihan. Tes IQ dalam penentuan dan pertimbangan pemilihan jurusan pada sekolah biasanya dilakukan secara manual dan membutuhkan waktu yang cukup banyak untuk mengetahui hasil IQ dalam penentuan pemilihan jurusan, selain itu banyak peserta tes sulit memahami untuk menghitung hasil tes IQ karena cukup rumit sehingga untuk mempermudah pihak sekolah dalam melaksanakan tes IQ penentuan jurusan maka diperlukan adanya suatu aplikasi yang berbasis komputer dan untuk membangun aplikasi yang akan digunakan bahasa pemrograman serta metode pengujian white box. Hasil evaluasi terhadap aplikasi yang dibangun sangat membantu serta mempercepat pihak sekolah dalam penentuan jurusan dan tepat dalam penentuan jurusan siswa yang disesuaikan kemampuan mereka serta membudayakan pemakaian komputer di kalangan siswa.IQ is a grouping of human intelligence, to determine a person's intellect wide range of measuring instruments used include intelligence tests, tests of emotional, spiritual tests, psychological and other measuring devices. The higher the spirit of people to achieve success, the higher the need for intellectual capital, emotional, psychological, interests and talents. All these capabilities can be a hidden talent within untapped, or talent that should be raised with the various exercises. IQ tests in the determination and consideration of election department at school is usually done manually and requires considerable time to know the results of IQ in determining the selection of majors, besides many test-takers is difficult to understand to calculate the results of an IQ test because it is quite complicated so as to facilitate the school in IQ tests determining the department implement the necessary existence of a computer-based applications and to build applications that will use the programming language as well as white-box testing methods. Results of evaluation of the applications that are built very helpful as well as accelerate the schools in the determination of the exact majors and students majoring in determining adjusted their abilities and cultivate the use of computers among students.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 620
Author(s):  
Paweł Gumułka ◽  
Monika Dąbrowska ◽  
Małgorzata Starek

A class of drugs called coxibs (COX-2 inhibitors) were created to help relieve pain and inflammation of osteoarthritis and rheumatoid arthritis with the lowest amount of side effects possible. The presented paper describes a new developed, optimized and validated thin layer chromatographic (TLC)-densitometric procedure for the simultaneous assay of five coxibs: celecoxib, etoricoxib, firecoxib, rofecoxib and cimicoxib. Chromatographic separation was conducted on HPTLC F254 silica gel chromatographic plates as a stationary phase using chloroform–acetone–toluene (12:5:2, v/v/v) as a mobile phase. Densitometric detection was carried out at two wavelengths of 254 and 290 nm. The method was tested according to ICH guidelines for linearity, recovery and specificity. The presented method was linear in a wide range of concentrations for all analyzed compounds, with correlation coefficients greater than 0.99. The method is specific, precise (%RSD < 1) and accurate (more than 95%, %RSD < 2). Low-cost, simple and rapid, it can be used in laboratories for drug monitoring and quality control.


2020 ◽  
Vol 17 (1) ◽  
pp. 57-66
Author(s):  
Yan Zhang ◽  
Luyan Zhang ◽  
Gang Chen

Background: Sample preparation is crucially important for the capillary electrophoretic measurement of the bioactive constituents in Citri Reticulatae Pericarpium because conventional solvent extraction is time-consuming and the solvent peaks seriously interfere with the measured capillary electropherograms. Objective: The objective of the present study is to establish far infrared-assisted sample preparation approaches for the analysis of Citri Reticulatae Pericarpium. Methods: Synephrine and hesperidin in Citri Reticulatae Pericarpium were determined by capillary electrophoresis in combination with far infrared-assisted sample extraction and solvent removal. Results: The effects of detection potentials, irradiation times and the voltages applied to the infrared generator were investigated to acquire the optimal assay conditions. Synephrine and hesperidin could be well separated within 6 min at a separation voltage of 9 kV in an alkaline borate solution. Satisfactory linearity was observed over the concentration range of 0.001 to 1 mM with the detection limits of 0.43 and 0.52 μM for synephrine and hesperidin, respectively. The results exhibited that far infrared irradiations could enhance the efficiencies of sample extraction and solvent removal during the sample preparation of Citri Reticulatae Pericarpium. The extraction time was significantly reduced to 6 min while the interference of the solvent peaks towards the electropherograms was eliminated. Conclusion: Far infrared-accelerated extraction and solvent removal were employed in the capillary electrophoretic determination of the bioactive constituents in Citri Reticulatae Pericarpium with satisfactory results. The ease, simplicity, efficiency and low cost of the novel sample preparation approaches indicate they may find a wide range of applications.


2020 ◽  
Vol 86 (7) ◽  
pp. 39-44
Author(s):  
K. V. Gogolinsky ◽  
A. E. Ivkin ◽  
V. V. Alekhnovich ◽  
A. Yu. Vasiliev ◽  
A. E. Tyurnina ◽  
...  

Thickness is one of the key indicators characterizing the quality and functional properties of coatings. Various indirect methods (electromagnetic, radiation, optical) most often used in practice to measure thickness are based on the functional dependence of a particular physical parameter of the system «base – coating» on the coating thickness. The sensitivity of these procedures to the certain properties of coatings imposes the main restriction to the accuracy of measurements. Therefore, the development and implementation of the approaches based on direct measurements of geometric parameters of the coating appears expedient. These methods often belong to the class of «destructive» and, in addition to measuring instruments, require the use of special equipment. To ensure the uniformity of measurements in the laboratory or technological control, these methods are isolated as a separate procedure (method) and must undergo metrological certification in accordance with GOST R 8.563–2009. We present implementation, metrological certification and practical application of the method for measuring thickness of coatings by crater-grinding method. The principles of technical implementation of test equipment, measurement procedure and calculation formulas are described. The results of evaluating the accuracy indicators of the proposed procedure by calculation and experimental methods are presented. In both cases, the relative error did not exceed 6%. The applicability of the developed technique is shown for a wide range of coating materials (from soft metals to superhard ceramics) of different thickness (with from units to hundreds of micrometers). Apart from the goals of process control and outgoing inspection, the method can be recommended as a reference measurement procedure for calibration of measures and adjusting samples for various types of thickness gauges.


Sign in / Sign up

Export Citation Format

Share Document