scholarly journals The possibilities of stem cell application in regenerative medicine

2016 ◽  
Vol 54 (1) ◽  
pp. 49-64
Author(s):  
Sabina Galiniak ◽  
Izabela Krawczyk-Merć ◽  
Agnieszka Pedrycz

AbstractStem cells are characterized by their ability to self-renew and differentiate into various cell types. They offer great potential for a wide range of applications, however, medical studies on the use of embryonal stem cells are largely limited to bioethical issues searching for alternative sources of stem cells, which include isolating cells from adult organisms or inducing pluripotentiality of somatic cells by administration of transcription factors. Nowadays, stem cells are used to study the mechanisms of cell differentiation and treat diseases that are commonly considered to be incurable, such as diabetes and neurodegenerative diseases, as well as enable regeneration of skin damage and myocardium. This review introduces the subject of stem cells, their sources and application in regenerative medicine.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Birbal Singh ◽  
Gorakh Mal ◽  
Vinod Verma ◽  
Ruchi Tiwari ◽  
Muhammad Imran Khan ◽  
...  

Abstract Background The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. Main body Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. Conclusions The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1759 ◽  
Author(s):  
Takehiro Yamazaki ◽  
Toshifumi Kishimoto ◽  
Paweł Leszczyński ◽  
Koichiro Sadakane ◽  
Takahiro Kenmotsu ◽  
...  

To better understand the regulation and function of cellular interactions, three-dimensional (3D) assemblies of single cells and subsequent functional analysis are gaining popularity in many research fields. While we have developed strategies to build stable cellular structures using optical tweezers in a minimally invasive state, methods for manipulating a wide range of cell types have yet to be established. To mimic organ-like structures, the construction of 3D cellular assemblies with variety of cell types is essential. Our recent studies have shown that the presence of nonspecific soluble polymers in aqueous solution is the key to creating stable 3D cellular assemblies efficiently. The present study further expands on the construction of 3D single cell assemblies using two different cell types. We have successfully generated 3D cellular assemblies, using GFP-labeled adipose tissue-derived stem cells and endothelial cells by using optical tweezers. Our findings will support the development of future applications to further characterize cellular interactions in tissue regeneration.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 914 ◽  
Author(s):  
Giancotti ◽  
Monti ◽  
Nevi ◽  
Brunelli ◽  
Pajno ◽  
...  

During foetal life, the liver plays the important roles of connection and transient hematopoietic function. Foetal liver cells develop in an environment called a hematopoietic stem cell niche composed of several cell types, where stem cells can proliferate and give rise to mature blood cells. Embryologically, at about the third week of gestation, the liver appears, and it grows rapidly from the fifth to 10th week under WNT/β-Catenin signaling pathway stimulation, which induces hepatic progenitor cells proliferation and differentiation into hepatocytes. Development of new strategies and identification of new cell sources should represent the main aim in liver regenerative medicine and cell therapy. Cells isolated from organs with endodermal origin, like the liver, bile ducts, and pancreas, could be preferable cell sources. Furthermore, stem cells isolated from these organs could be more susceptible to differentiate into mature liver cells after transplantation with respect to stem cells isolated from organs or tissues with a different embryological origin. The foetal liver possesses unique features given the co-existence of cells having endodermal and mesenchymal origin, and it could be highly available source candidate for regenerative medicine in both the liver and pancreas. Taking into account these advantages, the foetal liver can be the highest potential and available cell source for cell therapy regarding liver diseases and diabetes.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Soukaina Bahsoun ◽  
Karen Coopman ◽  
Elizabeth C. Akam

AbstractMesenchymal stem cells (MSCs) represent an invaluable asset for the field of cell therapy. Human Bone marrow-derived MSCs (hBM-MSCs) are one of the most commonly used cell types in clinical trials. They are currently being studied and tested for the treatment of a wide range of diseases and conditions. The future availability of MSCs therapies to the public will require a robust and reliable delivery process. Cryopreservation represents the gold standard in cell storage and transportation, but its effect on BM-MSCs is still not well established. A systematic review was conducted to evaluate the impact of cryopreservation on BM-MSCs and to attempt to uncover the reasons behind some of the controversial results reported in the literature. Forty-one in vitro studies were analysed, and their results organised according to the cell attributes they assess. It was concluded that cryopreservation does not affect BM-MSCs morphology, surface marker expression, differentiation or proliferation potential. However, mixed results exist regarding the effect on colony forming ability and the effects on viability, attachment and migration, genomic stability and paracrine function are undefined mainly due to the huge variabilities governing the cryopreservation process as a whole and to the lack of standardised assays.


2008 ◽  
Vol 115 (2) ◽  
pp. 43-55 ◽  
Author(s):  
Cecilia Annerén

Pluripotent ES (embryonic stem) cells can be expanded in culture and induced to differentiate into a wide range of cell types. Self-renewal of ES cells involves proliferation with concomitant suppression of differentiation. Some critical and conserved pathways regulating self-renewal in both human and mouse ES cells have been identified, but there is also evidence suggesting significant species differences. Cytoplasmic and receptor tyrosine kinases play important roles in proliferation, survival, self-renewal and differentiation in stem, progenitor and adult cells. The present review focuses on the role of tyrosine kinase signalling for maintenance of the undifferentiated state, proliferation, survival and early differentiation of ES cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Ross E. B. Fitzsimmons ◽  
Matthew S. Mazurek ◽  
Agnes Soos ◽  
Craig A. Simmons

As a result of over five decades of investigation, mesenchymal stromal/stem cells (MSCs) have emerged as a versatile and frequently utilized cell source in the fields of regenerative medicine and tissue engineering. In this review, we summarize the history of MSC research from the initial discovery of their multipotency to the more recent recognition of their perivascular identity in vivo and their extraordinary capacity for immunomodulation and angiogenic signaling. As well, we discuss long-standing questions regarding their developmental origins and their capacity for differentiation toward a range of cell lineages. We also highlight important considerations and potential risks involved with their isolation, ex vivo expansion, and clinical use. Overall, this review aims to serve as an overview of the breadth of research that has demonstrated the utility of MSCs in a wide range of clinical contexts and continues to unravel the mechanisms by which these cells exert their therapeutic effects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250160
Author(s):  
Matthew Rusin ◽  
Nardine Ghobrial ◽  
Endre Takacs ◽  
Jeffrey S. Willey ◽  
Delphine Dean

Biomedical use of radiation is utilized in effective diagnostic and treatment tools, yet can introduce risks to healthy tissues. High energy photons used for diagnostic purposes have high penetration depth and can discriminate multiple tissues based on attenuation properties of different materials. Likewise, the ability to deposit energy at various targets within tumors make the use of photons effective treatment for cancer. Radiation focused on a tumor will deposit energy when it interacts with a biological structure (e.g. DNA), which will result in cell kill should repair capacity of the tissue be overwhelmed. Likewise, damage to normal, non-cancerous tissues is a consequence of radiation that can lead to acute or late, chronic toxicity profiles. Adipose derived stem cells (ADSCs) are mesenchymal stem cells that have been proven to have similar characteristics to bone marrow derived stem cells, except that they are much easier to obtain. Within the body, ADSCs act as immunomodulators and assist with the maintenance and repair of tissues. They have been shown to have excellent differentiation capability, making them an extremely viable option for stem cell therapies and regenerative medicine applications. Due to the tissue ADSCs are derived from, they are highly likely to be affected by radiation therapy, especially when treating tumors localized to structures with relatively high ADSC content (eg., breast cancer). For this reason, the purpose behind this research is to better understand how ADSCs are affected by doses of radiation comparable to a single fraction of radiation therapy. We also measured the response of ADSCs to exposure at different dose rates to determine if there is a significant difference in the response of ADSCs to radiation therapy relevant doses of ionizing radiation. Our findings indicate that ADSCs exposed to Cesium (Cs 137)-gamma rays at a moderate dose of 2Gy and either a low dose rate (1.40Gy/min) or a high dose rate (7.31Gy/min) slow proliferation rate, and with cell cycle arrest in some populations. These responses ADSCs were not as marked as previously measured in other stem cell types. In addition, our results indicate that differences in dose rate in the Gy/min range typically utilized in small animal or cell irradiation platforms have a minimal effect on the function of ADSCs. The potential ADSCs have in the space of regenerative medicine makes them an ideal candidate for study with ionizing radiation, as they are one of the main cell types to promote tissue healing.


Author(s):  
С.М. Кузин ◽  
Н.В. Чебышев ◽  
Д.В. Богомолов ◽  
И.А. Беречикидзе ◽  
Т.В. Сахарова ◽  
...  

Развитие генетики оказывает все большее влияние на современную медицину. На основе достижений в области структурной, функциональной геномики и эпигенетики сформировались новые наиболее перспективные направления - таргетная терапия, персонализированная и регенеративная медицина. Появились принципиально новые возможности для диагностики, прогнозирования, профилактики и лечения широкого спектра заболеваний. Все возрастающая роль генетики предъявляет принципиально иные требования к ее преподаванию в медицинских ВУЗах с использованием новых педагогических методик. Простого увеличения количества часов в рамках предмета «Биология» уже недостаточно для подготовки специалистов, чья профессиональная деятельность напрямую связана с генетикой: онкологов, вирусологов, иммунологов и многих других. The development of genetics has an increasing influence on modern medicine. Based on the achievements in the field of structural, functional genomics and epigenetics, new most promising directions have been formed - targeted therapy, personalized and regenerative medicine. There are fundamentally new opportunities for the diagnosis, prediction, prevention and treatment of a wide range of diseases. The increasing role of genetics imposes fundamentally different requirements for its teaching in medical Schools using new pedagogical methods. Simply increasing the number of academic hours in the subject “Biology” is no longer enough to train specialists whose professional activities are directly related to genetics: oncologists, virologists, immunologists, and many others.


2012 ◽  
pp. 1855-1866
Author(s):  
Alessandro Prigione

Regenerative medicine is a rapidly evolving research field whose main aims are to provide new therapeutic approaches and to repair or replace injured tissues with functional cells derived from stem cells. In the past few years, research breakthroughs have revolutionized the field by showing that all somatic cells have the potential to re-acquire stem cell-like properties. Thus, it appears possible to generate relevant cell types starting from cells easily obtained from affected individuals. The obtained differentiated cells could eventually serve as in vitro tools for the study of disease-associated mechanisms and for performing customized drug screenings. Moreover, in the context of cellular transplantation, these cells represent the ideal cell source given that they posses the same genetic code and thus will avoid the occurrence of unwanted immune reactions. Overall, this revolutionary technique called cellular reprogramming might provide substantial support for the future development of personalized medicine. In this chapter, I describe the recent advances in the field of stem cell-based regenerative medicine applications. Parkinson’s disease is chosen as a paradigmatic example in which the use of stem cells for study and therapy could have a relevant impact and potentially represent a future cure for this debilitating disorder.


Sign in / Sign up

Export Citation Format

Share Document