A Prototype for a Palm-sized Photoacoustic Sensing Unit

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Fei Gao ◽  
Xiaohua Feng ◽  
Xilin Miao ◽  
Yuanjin Zheng

AbstractPhotoacoustic sensing and imaging techniques have experienced tremendous research progress, ranging from fundamental physics and methodologies to various biomedical and clinical applications in recent years. However, the state-of-art photoacoustic systems still suffer from high cost and bulky size, which hinders their potential applications for low-cost and portable diagnostics. In this paper, we propose the design for a palm-size photoacoustic sensor prototype. The design’s lower cost and smaller size would allow it to be used for portable photoacoustic sensing applications like oxygen saturation and temperature. By converting the high-frequency photoacoustic pulse signal to low-frequency photoacoustic DC signal through a rectifier circuit, the proposed photoacoustic receiver could potentially reduce the cost and device size efficiently, compared with the conventional highspeed data acquisition card interfaced with computer solutions. Preliminary testing is demonstrated to show its feasibility for photoacoustic sensing applications.

2013 ◽  
Vol 421 ◽  
pp. 334-336 ◽  
Author(s):  
Yong Qiang Cheng ◽  
Cui Lian Guo ◽  
Yang Li ◽  
Bin Zhao ◽  
Xiao Cui

Paper-based microfluidic devices have recently received increasing attention as a potential platform for its low cost, portability and excellent compatibility with biological samples. A variety of fabrication technologies were employed, including simple photolithography, wax plotting, printing, inkjet etching, plasma etching and so on. Meanwhile, the potential applications of paper-based microfluidic devices in diagnostic, point-of-care (POC), and environmental monitoring were reported. We review the recent progress of fabrication technologies and the applications of paper-based microfluidic devices.


Acoustic noise can be reduced by active noise cancellation (ANC) and passive noise cancellation (PNC) algorithm. The PNC can effectively attenuate the noise with high frequency, but not the noise with low frequency. ANC is one of the promising solution to reduce the low frequency noise. Commercial ANC headphones often use the digital signal processor (DSP) to perform the noise cancellation algorithm to cancel the annoying acoustic noise, but the cost is relatively high. A low-cost ANC solution is urgently needed to reduce the acoustic noise. The relationship between the frequency, distance and degree of magnitude of the noise level are also evaluated in this paper.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1132
Author(s):  
Mathieu Ribes ◽  
Gaspard Russias ◽  
Denis Tregoat ◽  
Antoine Fournier

Hyperspectral imaging techniques have been expanding considerably in recent years. The cost of current solutions is decreasing, but these high-end technologies are not yet available for moderate to low-cost outdoor and indoor applications. We have used some of the latest compressive sensing methods with a single-pixel imaging setup. Projected patterns were generated on Fourier basis, which is well-known for its properties and reduction of acquisition and calculation times. A low-cost, moderate-flow prototype was developed and studied in the laboratory, which has made it possible to obtain metrologically validated reflectance measurements using a minimal computational workload. From these measurements, it was possible to discriminate plant species from the rest of a scene and to identify biologically contrasted areas within a leaf. This prototype gives access to easy-to-use phenotyping and teaching tools at very low-cost.


2018 ◽  
Vol 926 ◽  
pp. 101-106
Author(s):  
Achanai Buasri ◽  
Wachirapong Promsupa ◽  
Santi Wannato ◽  
Sujitra Wanta ◽  
Vorrada Loryuenyong

Nowadays, researchers have made attempts to seek for cost-effective and eco-friendly catalyst for transesterification reaction. One possible way to reduce the costs of the catalysts is to use biomass or industrial waste as catalytic materials. The use of waste materials as catalysts also reduces the cost of waste handling and disposal. The objective of this study was to investigate the potential of the low cost, environmentally friendly calcined marlstones to be a viable catalyst in the transesterification of Jatropha seed oil. The calcination of marlstones was conducted at 900 °C for 4 h, and then the modification of calcined marlstones via hydration-dehydration treatment. The effects of different preparation conditions on biodiesel yield were investigated. The solid catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method. The highest biodiesel yield of 97.56% for modified calcium oxide (CaO) catalyst was obtained under the optimum condition (reaction time 5 min, microwave power 600 W, methanol/oil molar ratio 9:1, and catalyst dosage 7 wt%). It was showing potential applications of novel catalyst in biodiesel industry.


2019 ◽  
Vol 271 ◽  
pp. 01007
Author(s):  
Marlon Agüero ◽  
Ali Ozdagli ◽  
Fernando Moreu

Structural Health Monitoring (SHM) systems are used to monitor critical infrastructure, such as bridges, high-rise buildings, and stadiums, and it has been observed that SHM has the potential to both prolong the structure lifespan and to improve public safety. Within SHM studies and in the research on monitoring in general, the application of wireless sensors (WS) has recently gained considerable research interest due to the cost reduction, associated with the installation and maintenance of monitoring systems. However, despite the advances in the research on WS, there are several issues and challenges in the application of WS that require improvements, in particular for Outdoor Environment Monitoring (OEM) because of their harsh operational conditions, huge targeted areas and limited energy budgets. This paper presents a low-cost, battery-powered, efficient wireless intelligent sensor (LEWIS2) that stores acceleration and angular velocity on a memory card to accurately estimate the trajectory of different applications.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 135 ◽  
Author(s):  
Yijian Huang ◽  
Shuhui Liu ◽  
Lichao Zhang ◽  
Yiping Wang ◽  
Ying Wang

A high sensitivity fiber-optic sensor based on self-imaging effect in a hollow-core capillary waveguide (HCCW) is presented for sensing applications. The sensor is composed of a section of HCCW fusion spliced between single mode fibers (SMFs). The self-imaging effect in the HCCW is investigated with different fiber lengths and arc-fusion parameters. By infiltrating the hollow core with index matching liquids, the peak wavelength of the proposed device shifts towards longer wavelengths. The temperature and refractive index (RI) responses of the sensor are studied systematically. When temperature is increased from 25 °C to 75 °C, the temperature sensitivity of the device can be improved significantly with the infiltrated structure, and reaches −0.49 nm/°C, compared with that of the un-filled device, which is 9.8 pm/°C. For the RI response, the liquid-filled structure achieves sensitivity of 12,005 nm/RIU in the range between 1.448 and 1.450, slightly higher than the 11,920 nm/RIU achieved by the un-filled one. The proposed sensor exhibits the advantages of simple structure, high sensitivity and low cost, which may find potential applications in physical and chemical sensing.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2020 ◽  
Author(s):  
Jonathan Sanching Tsay ◽  
Alan S. Lee ◽  
Guy Avraham ◽  
Darius E. Parvin ◽  
Jeremy Ho ◽  
...  

Motor learning experiments are typically run in-person, exploiting finely calibrated setups (digitizing tablets, robotic manipulandum, full VR displays) that provide high temporal and spatial resolution. However, these experiments come at a cost, not limited to the one-time expense of purchasing equipment but also the substantial time devoted to recruiting participants and administering the experiment. Moreover, exceptional circumstances that limit in-person testing, such as a global pandemic, may halt research progress. These limitations of in-person motor learning research have motivated the design of OnPoint, an open-source software package for motor control and motor learning researchers. As with all online studies, OnPoint offers an opportunity to conduct large-N motor learning studies, with potential applications to do faster pilot testing, replicate previous findings, and conduct longitudinal studies (GitHub repository: https://github.com/alan-s-lee/OnPoint).


Sign in / Sign up

Export Citation Format

Share Document