Enhancement of mechanical properties of polypropylene by blending with styrene-(ethylene-butylene)-styrene tri-block copolymer

2014 ◽  
Vol 34 (8) ◽  
pp. 765-774 ◽  
Author(s):  
Aleksey D. Drozdov ◽  
Catalina-Gabriela Sanporean ◽  
Jesper de C. Christiansen

Abstract Observations are reported in impact tests, uniaxial tensile tests with various strain rates, relaxation tests with various strains and cyclic tests with a mixed deformation program and various maximum strains per cycle on neat polypropylene (PP) and a blend of PP with styrene-(ethylene-butylene)-styrene copolymer (SEBS). Experimental data demonstrate a pronounced enhancement of impact resistance of PP due to the presence of an impact modifier, accompanied by improvement of its properties under low-speed loading, observed as a decrease in relaxation rate and residual strain under cyclic deformation. Material constants in constitutive equations are determined by matching the experimental data. Correlations are established between changes in the viscoelastoplastic response of PP and evolution of its microstructure induced by the presence of an impact modifier.

2015 ◽  
Vol 35 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Andrzej Ambroziak

Abstract This article describes the laboratory tests necessary to identify the mechanical properties of the polyvinylidene fluoride (PVDF)-coated fabrics named Precontraint 1202S and Precontraint 1302S. First, a short survey of the literature concerning the description of coated woven fabrics is presented. Second, the material parameters for PVDF-coated fabrics are specified on the basis of biaxial tensile tests. A comparison of the 1:1 biaxial and the uniaxial tensile tests results is also given. Additionally, biaxial cyclic tests were performed to observe the change of immediate mechanical properties under cyclic load. The article is aimed as an introduction to a comprehensive investigation of the mechanical properties of coated fabrics.


1999 ◽  
Vol 121 (3) ◽  
pp. 179-185 ◽  
Author(s):  
X. Q. Shi ◽  
W. Zhou ◽  
H. L. J. Pang ◽  
Z. P. Wang

In this study, tensile tests of 63Sn/37Pb solder were carried out at various strain rates from 10−5 s−1 to 10−1 s−1 over a wide temperature range from −40°C to 125°C to study the effect of strain rate and testing temperature on the mechanical properties in a systematic manner. Based on these experimental data, a set of empirical formulae was derived by a statistical method to describe the effect of temperature and strain rate in a quantitative manner and explain the variation in the mechanical properties published in other reports. It is concluded that the empirical formulae can be used to characterize the mechanical properties of 63Sn/37Pb over a wide range of temperatures and strain rates.


2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


2015 ◽  
Vol 732 ◽  
pp. 161-164 ◽  
Author(s):  
Jan Vesely ◽  
Lukas Horny ◽  
Hynek Chlup ◽  
Milos Beran ◽  
Milan Krajicek ◽  
...  

The effects of the polyvinyl alcohol (PVA) concentration on mechanical properties of hydrogels based on blends of native or denatured collagen / PVA were examined. Blends of PVA with collagen were obtained by mixing the solutions in different ratios, using glycerol as a plasticizer. The solutions were cast on polystyrene plates and the solvent was allowed to evaporate at room temperature. Uniaxial tensile tests were performed in order to obtain the initial modulus of elasticity (up to deformation 0.1), the ultimate tensile stress and the deformation at failure of the material in the water-saturated hydrogel form. It was found that the material was elastic and the addition of PVA helped to enhance both the ultimate tensile stress and modulus of elasticity of the films. Samples prepared from denaturated collagen showed the higher ultimate tensile stress and the deformation at failure in comparison with those prepared from native collagen. The results suggest that we could expect successful application of the collagen/PVA biomaterial for tissue engineering.


2021 ◽  
Vol 1026 ◽  
pp. 65-73
Author(s):  
Kai Zhu ◽  
Hong Wei Yan

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate


2016 ◽  
Vol 47 (8) ◽  
pp. 2184-2204 ◽  
Author(s):  
Duchamp Boris ◽  
Legrand Xavier ◽  
Soulat Damien

The tensile behaviour of braid reinforcement is classically described by the behaviour of composite elaborated from these reinforcements. Few studies concern the tensile behaviour of braided fabrics. In this paper biaxial and triaxial braids are manufactured on a braiding loom. The evolution of key parameters as linear mass and braiding angle in function of process parameters is presented. Braid reinforcements are characterized in uniaxial tensile. The mechanical behaviour is analysed and compared in function of the braiding angle, but also different kinds of braid are considered. A specific behaviour called “double-peak” is identified for triaxial braids which have a higher braiding angle. The evolution of the braiding angle measured during tensile tests gives a comprehension on the mechanical behaviour of dry braids. Associated with this experimental study, an analytical model is also proposed, to predict mechanical properties of braid reinforcements.


2006 ◽  
Vol 129 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fahmi Zaïri ◽  
Moussa Naït-Abdelaziz ◽  
Krzysztof Woznica ◽  
Jean-Michel Gloaguen

In this study, a modelization of the viscoplastic behavior of amorphous polymers is proposed, from an approach originally developed for metal behavior at high temperature, in which state variable constitutive equations have been modified. A procedure for the identification of model parameters is developed through the use of experimental data from both uniaxial compressive tests extracted from the literature and uniaxial tensile tests performed in this study across a variety of strain rates. The numerical algorithm shows that the predictions of this model well describe qualitatively and quantitatively the intrinsic softening immediately after yielding and the subsequent progressive orientational hardening corresponding to the response of two polymers, amorphous polyethylene terephthalate and rubber toughened polymethyl methacrylate.


Sign in / Sign up

Export Citation Format

Share Document