Tris(hydroxydietylene)-2-hydroxypropane-1,2,3-tricarboxylate for rigid PUR-PIR foams

2015 ◽  
Vol 35 (8) ◽  
pp. 743-751 ◽  
Author(s):  
Joanna Liszkowska ◽  
Bogusław Czupryński ◽  
Joanna Paciorek-Sadowska

Abstract A new compound was synthesized from 2-hydroxy-1,2,3-propanetricarboxylic acid (citric acid) and diethylene glycol (DEG). Compound, tris(hydroxydietylene)-2-hydroxypropane-1,2,3-tricarboxylate (THT) rated properties in terms of suitability for the rigid polyurethane-polyisocyanurate (PUR-PIR). Rated properties of THT eg., acid number, density, pH, solubility. The resulting product was characterized by hydroxyl number 405.2 mg KOH/g and viscosity 4879.7 mPa·s. Compound used to foams in amounts of from 0.1 equivalents to 0.5 equivalents instead of Rokopol RF551. The results of rigid foams showed that the amount of THT in the foam significantly affects the compressive strength of foams. Its amount does not affect the apparent density of foam, retention and thermal conductivity. The foams are characterized by small values of fragility.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1816 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Jacek Lubczak ◽  
Bogusław Czupryński

This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation.


2011 ◽  
Vol 71-78 ◽  
pp. 490-493 ◽  
Author(s):  
Zhi Min He ◽  
Jun Zhe Liu ◽  
Tian Hong Wang

This paper presents a laboratory study on the effect of air entraining agent on the performance of thermal insulating mortar with glazed hollow bead. The test results show that with the dosage of air entraining agent increases, the consistency of thermal insulating mortar increases, apparent density, thermal conductivity and drying shrinkage decline, However, the compressive strength greater losses owing to excessive consumption of air entraining agent; air entraining agent within a certain dosage can significantly improve the operating performance of thermal insulation mortar, increase its consistency and reduce its apparent density, thermal conductivity coefficient and drying shrinkage. Due to excessive addition of air entraining agent, the apparent density, thermal conductivity and compressive strength of thermal insulation mortar all increase. For a specific insulation mortar, there will exist the best mixing amount of air entraining agent.


2013 ◽  
Vol 357-360 ◽  
pp. 1441-1445
Author(s):  
Xiao Lin Li ◽  
Zheng Fang ◽  
Dong Ji ◽  
Zhi Dong Wan ◽  
Kai Guo

The synthesis of a novel class of diamine-based polyols derivatives and the potentials and the limitations of these polyols were reported. This class of diamine-based polyols with high hydroxyl values and no acid values can be used in rigid polyurethane foams. The prepared rigid foams show the properties of low density, high closed cell content, low thermal conductivity, and high compressive strength.


2015 ◽  
Vol 17 (4) ◽  
pp. 134-141 ◽  
Author(s):  
Joanna Liszkowska ◽  
Bogusław Czupryński ◽  
Joanna Paciorek-Sadowska

AbstractNew polyols were synthesized with 2-hydroxypropane-1.2.3-tricarboxylic acid and butane-1,4-diol (1.4-BD). The synthesis was performed using different catalysts in the amount of 0.1%. Used catalyst: Tyzor TPT, tin(II) acetate, sulfuric(IV) acid. The fourth reaction was conducted without the use of a catalyst. The polyols’ properties were evaluated with regards to the usefulness in rigid polyurethane-polyisocyanurate (PUR-PIR) foams (acid value, density, pH and solubility, FTIR spectra). Based on the research, it was evaluated that only the polyol synthesized using Tyzor TPT (E6) was useful in production of rigid PUR-PIR foams. Its hydroxyl number was 496 mgKOH/g and its viscosity was about 14 552 mPa · s. A series of five foams P6.1–P6.5 was produced with this polyol. Rigid foams test results indicated that the amount of this compound in the foam substantially affects its compressive strength, density and their retention. The foams have low brittleness values.


2012 ◽  
Vol 193-194 ◽  
pp. 533-538 ◽  
Author(s):  
Cong Bo Li ◽  
Su Hong Yin ◽  
Zi Yun Wen ◽  
Xiao Hua Zhou

An optimal air-entraining agent was selected through a systematically experimental and theoretical study on air-entraining and full-light-aggregate concrete (AEFLC) for structural and thermal insulating wall. Among the three air-entraining agents: rosin acid sodium, Polycarboxylate-type agent, Lauric acid-based agent, Lauric acid-based (Huntsman) air entraining agent was considered the best for the air-entraining quantity and quality. As the result, a AEFLC with the apparent density of 1110kg/m3, compressive strength of 18.8MPa in 28 days, and thermal conductivity of 0.38w/(m.K) was obtained.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1431 ◽  
Author(s):  
Joanna Paciorek-Sadowska ◽  
Marcin Borowicz ◽  
Marek Isbrandt ◽  
Bogusław Czupryński ◽  
Łukasz Apiecionek

This article presents the results of research on obtaining new polyurethane materials modified by a by-product from vegetable oils industry—rapeseed cake. The chemical composition of rapeseed cake was examined. Rigid polyurethane-polyisocyanurate (RPU/PIR) foams containing a milled rapeseed cake in their composition were obtained as part of the conducted research. Biofiller was added in amount of 30 wt.% up to 60 wt.%. Effects of rapeseed cake on the foaming process, cell structure and selected properties of foams, such as apparent density, compressive strength, brittleness, flammability, absorbability, water absorption, thermal resistance and thermal conductivity are described. The foaming process of RPU/PIR foams modified by rapeseed cake was characterized by a lower reactivity, lower foaming temperature and decrease in dielectric polarization. This resulted in a slowed formation of the polyurethane matrix. Apparent density of RPU/PIR foams with biofiller was higher than in unmodified foam. Addition of rapeseed cake did not have a significant influence on the thermal conductivity of obtained materials. However, we observed a tendency for opening the cells of modified foams and obtaining a smaller cross-sectional area of cells. This led to an increase of absorbability and water absorption of obtained materials. However, an advantageous effect of using rapeseed cake in polyurethane formulations was noted. Modified RPU/PIR foams had higher compressive strength, lower brittleness and lower flammability than reference foam.


2021 ◽  
pp. 026248932110171
Author(s):  
Chunhui Li ◽  
Haihong Ma ◽  
Congqiang Song ◽  
Zhengfa Zhou ◽  
Weibing Xu ◽  
...  

Melamine-formaldehyde (MF)rigid foams with high closed cell content were prepared via oven heating process, using MF prepolymer prepared from melamine and paraformaldehyde as a matrix, cyclohexane as the foaming agent, dimethyl silicon oil as the foam stabilizers, hydrochloric acid as the catalyst. The effect of MF prepolymer viscosity, foaming temperature, amount of catalyst on morphology, closed cell content, apparent density, water absorption and compressive strength of MF rigid foams were systematically studied. The optimized foaming conditions are as follows: the viscosity of MF prepolymer ranges from 35 Pa·s to 45 Pa·s, the foaming temperature is 125°C and the content of the catalyst is 0.65 wt%. The as-prepared MF foams showed the best comprehensive performance with closed cell content of 83.5%, apparent density of 62 kg·m−3, water absorption of 12.0%, compressive strength of 292kPa, thermal conductivity of 0.033 W m−1 K−1 and limiting oxygen index (LOI) of 36%. Compared to conventional organic foams, MF rigid foams possess low water absorption, excellent thermal insulation and flame retardancy due to high closed cell content, and can be expected to be used as thermal insulation material for building exterior walls.


2020 ◽  
Vol 22 (1) ◽  
pp. 69
Author(s):  
Joanna Paciorek-Sadowska ◽  
Marcin Borowicz ◽  
Ewelina Chmiel ◽  
Jacek Lubczak

Two polyol raw materials were obtained in the conducted research, one based on metasilicic acid (MSA), the other based on poly(lactic acid) (PLA) waste. The obtained polyols were characterized in terms of their applicability for the production of rigid polyurethane foams (RPUFs). Their basic analytical properties (hydroxyl number, acid number, elemental analysis) and physicochemical properties (density, viscosity) were determined. The assumed chemical structure of the obtained new compounds was confirmed by performing FTIR and 1H NMR spectroscopic tests. Formulations for the synthesis of RPUFs were developed on the basis of the obtained research results. A mixture of polyols based on MSA and PLA in a weight ratio of 1:1 was used as the polyol component in the polyurethane formulation. The reference foam in these tests was a foam that was synthesized only on the basis of MSA-polyol. The obtained RPUFs were tested for basic functional properties (apparent density, compressive strength, water absorption, thermal conductivity coefficient etc.). Susceptibility to biodegradation in soil environment was also tested. It was found that the use of mixture of polyols based on MSA and PLA positively affected the properties of the obtained foam. The polyurethane foam based on this polyol mixture showed good thermal resistance and significantly reduced flammability in comparison with the foam based MSA-polyol. Moreover, it showed higher compressive strength, lower thermal conductivity and biodegradability in soil. The results of the conducted tests confirmed that the new foam was characterized by very good performance properties. In addition, this research provides information on new waste management opportunities and fits into the doctrine of sustainable resource management offered by the circular economy.


2020 ◽  
pp. 026248932092923
Author(s):  
Chunhui Li ◽  
Haihong Ma ◽  
Zhengfa Zhou ◽  
Weibing Xu ◽  
Fengmei Ren ◽  
...  

Toughing melamine-formaldehyde (MF) rigid closed-cell foams were prepared by using ethylene glycol (EG) and carbon fiber (CF) as composite toughening agents. The pulverization rate, compressive strength, bending strength, cellular structure, closed-cell ratio, water absorption ratio, thermal conductivity, thermal stability, limiting oxygen index (LOI), and char yield were characterized to study the morphology, mechanical, thermal, and fire-retardant properties of as-prepared toughing MF rigid foams. The pulverization rate result showed that introduction of composite modifier can obviously improve the toughness of MF rigid foams. The cellular structure, closed-cell ratio, and water absorption results showed that the addition of EG/CF can increase the closed-cell ratio and control the cell size of MF rigid foams. The compressive strength and bending strength results showed that the incorporation of composite modifier of MF rigid foams dramatically improved the mechanical properties. The LOI, char yield, and thermal stability results showed that the toughing MF rigid foams remained more intact char skeleton with flame-retardant effect, thus reducing the fire hazards. The as-prepared toughing MF rigid foams showed the best comprehensive performance with pulverization rate of 5.21%, compressive strength of 355.3 kPa, bending strength of 0.44 MPa, closed-cell ratio of 79.1%, water absorption of 9%, thermal conductivity of 0.031 W m−1 K−1, and LOI of 39.6%. Compared with unmodified MF rigid foams, toughing rigid closed-cell MF foams possess excellent pulverization rate, compressive strength, bending strength, cellular structure, thermal insulation, and flame retardancy.


2021 ◽  
Vol 57 (4) ◽  
pp. 275-285
Author(s):  
Xiaohua Gu ◽  
Hongxiang Luo ◽  
Ke Xv ◽  
Wenxiang Qiu ◽  
Peng Chen

The preparation of polyether polyols from waste rigid polyurethane foam has been achieved by chemical degradation of ethylene glycol and diethylene glycol as the degradation agent. Then, the modified rigid polyurethane foam was prepared by polyether polyols and glass fiber. To detect the characteristic of rigid polyurethane foam, the density, water absorption, compressive strength, thermal conductivity, infrared spectrum, morphology structure had been tested. Finally, the best degradation formula was explored, and the modified rigid polyurethane foam had been prepared from the recycled polyol.


Sign in / Sign up

Export Citation Format

Share Document