scholarly journals Numerical Simulation and Experimental Study on Formation of High Concentration of H2 Generated by Gas Explosion

2016 ◽  
Vol 23 (s1) ◽  
pp. 131-137 ◽  
Author(s):  
Baiwei Lei ◽  
Bing Wu ◽  
Yatong Zhao ◽  
Muhammad Aqeel Ashraf

Abstract In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84) which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation.

2004 ◽  
Vol 18 (26) ◽  
pp. 3451-3464 ◽  
Author(s):  
JINCANG ZHANG ◽  
YUFENG ZHANG ◽  
SHIXUN CAO ◽  
CHAO JING

The structure and transport properties of perovskite ( La 1-x Y x)2/3 Ca 1/3 MnO 3 (0≤x≤0.3) systems are systematically investigated. It is found that all the specimens show a single-phase structure and reveal a direct relationship between the Curie temperature Tc and the average ionic radius <rA> of La site. With increasing Y 3+ doped content, the metal-insulator transition temperature T MI (M-I) shifts to lower temperature. While the relevant resistivity peak ρp is sharp increased, for the specimens with large doping content, x=0.3, it has enhanced eight orders of magnitudes larger than the non-doped samples (x=0.0). At high concentration area, that is to say, when x>0.1, magnetic studies show a gradual increase of antiferromagnetic interaction with an increase of x, ultimately leading to a spatial-spin disorders, that is, spin-glass-like state for x=0.2 and x=0.3 compounds at about 35 K. The results show that it has connected a reduction of Tc and an increase in magnetoresistance with a decrease in the microstructural Mn - O - Mn bond angle.


2013 ◽  
Vol 539 ◽  
pp. 103-107 ◽  
Author(s):  
Jun Qing Zuo ◽  
Wu Yao ◽  
Jun Jie Qin

Thermoelectric properties of steel slag-carbon fiber/cement composites were studied in this paper. The effect of steel slag content on thermoelectric properties was focused on especially. The experimental results show that the addition of steel slag leads to an increase in the positive thermoelectric power of the cabon fiber/cement composites. The highest absolute thermoelectric power of carbon fiber/cement composites was rendered as positive as 14.4µV/°C by using steel slag, which had a high concentration of holes. Beside, a good linear relationship was observed between thermoelectric power and temperature differential on the specimen.


Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 120053
Author(s):  
Baiwei Lei ◽  
Chenguang Zhao ◽  
Binbin He ◽  
Bing Wu

Author(s):  
Shaolin Chen ◽  
Hong Zhang ◽  
Liaoping Hu ◽  
Guangqing He ◽  
Fen Lei ◽  
...  

The fatigue life of turbine housing is an important index to measure the reliability of a radial turbocharger. The increase in turbine inlet temperatures in the last few years has resulted in a decrease in the fatigue life of turbine housing. A simulation method and experimental verification are required to predict the life of a turbine housing in the early design and development process precisely. The temperature field distribution of the turbine housing is calculated using the steady-state bidirectional coupled conjugate heat transfer method. Next, the temperature field results are considered as the boundary for calculating the turbine housing temperature and thermomechanical strain, and then, the thermomechanical strain of the turbine housing is determined. Infrared and digital image correlations are used to measure the turbine housing surface temperature and total thermomechanical strain. Compared to the numerical solution, the maximum temperature RMS (Root Mean Square) error of the monitoring point in the monitoring area is only 3.5%; the maximum strain RMS error reached 11%. Experimental results of temperature field test and strain measurement test show that the testing temperature and total strain results are approximately equal to the solution of the numerical simulation. Based on the comparison between the numerical calculation and experimental results, the numerical simulation and test results were found to be in good agreement. The experimental and simulation results of this method can be used as the temperature and strain (stress) boundaries for subsequent thermomechanical fatigue (TMF) simulation analysis of the turbine housing.


1985 ◽  
Vol 59 ◽  
Author(s):  
Karlheinz Hölzlein ◽  
G. Pensl ◽  
M. Schulz ◽  
N. M. Johnson

ABSTRACTCz-grown Si samples containing a high concentration of oxygen are investigated after various processing steps by DLTS. Heat treatments ranging from 500°C–1000°C are performed to study the formation and annihilation of the “New Oxygen Donor” (ND) traps. Hydrogenation at low temperature leads to a reduction of the ND trap states. The experimental results confirm the “SiOx Interface Model” which assumes two differing types of interfacerelated states.


1965 ◽  
Vol 5 (02) ◽  
pp. 160-166 ◽  
Author(s):  
A.M. Rowe ◽  
I.H. Silberberg

Abstract A computer program was written to predict the phase behavior generated by the enriched-gas-drive process. This program is based, in part, on a new concept of convergence pressure, which is then used to select vapor-liquid equilibrium ratios (K-factors) for performing a series of flash calculations. The results of these calculations are the equilibrium vapor and liquid phase compositions which define the phase envelopes. The program was used to predict phase envelopes for 11 different hydrocarbon systems on which published experimental data were available. The predicted and experimental results compare favorably. Introduction The reservoir engineer is frequently faced with the problem of predicting what will happen if gas is injected into a reservoir. One aspect of this general problem is predicting the phase changes that will occur when a non-equilibrium gas displaces a reservoir fluid. In particular, a "dry" gas, upon displacing a volatile oil will pick up intermediate components from the oil. On the other hand, a "wet" gas, containing a high concentration of intermediates, will lose some of these components to a relatively low-gravity, non-equilibrium crude. It is this latter process, occurring in the enriched-gas displacement, which is treated in this paper. In the past, these phase changes have been determined experimentally and the results incorporated into various modifications of the Buckley-Leverett analysis. Such experimental work is time consuming, and the results are sensitive to numerous experimental errors. With the wide availability of high-speed digital computing equipment and numerous correlations pertaining to the vapor-liquid equilibria of hydrocarbon systems, it is now practical to calculate such phase behavior. This paper describes a computer program for performing these calculations. THE ENRICHED GAS DISPLACEMENT PROCESS Experimental results have shown that oil recovery can be significantly increased by enriching the displacing gas with intermediate hydrocarbon components. The essential features of the phase behavior generated by this enriched-gas-drive process are commonly illustrated with ternary diagrams such as Fig. 1. In this figure, Gas D, which contains a high concentration of intermediate hydrocarbons with respect to the undersaturated Crude A, is injected into the reservoir. When D contacts A, gas goes into solution until the oil becomes saturated (Point. B). Further contacting of Gas D and saturated Oil B results in a Mixture C which separates into Vapor Y(c) and Liquid X(c). Liquid X(c) is contacted by additional Gas D, resulting in Mixture E which separates into Vapor Y(e) and Liquid X(e). Repeated contacts of the liquid by the injected gas will eventually result in Liquid X(d) of maximum enrichment existing in equilibrium with Gas Y(d). The equilibrium tie-line X(d) Y(d), when extended, passes through the Point D representing the enriched injection gas. For systems of more than three components, the predicted equilibrium states are dependent upon not only reservoir temperature and pressure, but also the compositions of the crude oil and injected gas. If the gas is sufficiently enriched, a miscible displacement is generated. Line is tangent to the phase envelope at the critical point (Point Z) and represents the limiting slope of the tie-lines as the critical state is approached. Point I therefore represents the minimum enrichment of injection gas required to generate a miscible displacement. Point G represents the minimum enrichment required for initial miscibility of the injection gas with Crude A.Attra has presented a method to be used for prediction of oil recovery by the enriched gas displacement process. To develop the phase behavior data needed, he designed the experimental procedure described in the following quotation from his paper SPEJ P. 160ˆ


Author(s):  
V. C. S. Ferreira ◽  
C. S. S. M. Cordeiro ◽  
J. W. Kaehler

Pulverized coal with low average heating, producing ashes with high percentage of silica, is fired inside the furnaces of a Thermal Power Plant (TPP) of Candiota, State of Rio Grande do Sul, Brazil. The produced hot flue gas heats the water of the ECONOMIZER 01 (ECO 01) placed inside the exhausted duct. Distorted velocity profile at inlet of ECO 01 and high concentration of abrasive particles of flue gas cause drastic erosion. So intensive has been the abrasive action that some well-identified tubes end up collapsing. The unpredictable fail has caused many non-scheduled stops of the TPP. A study focused on the reduction this effect, was set up years ago. The paper shows part of this study end present results, obtained from the numerical simulation analysis of the flue gas flow. Some technical solutions are suggested to reduce the erosion of tubes providing that avoiding it showed be impossible.


1957 ◽  
Vol 55 (3) ◽  
pp. 361-373 ◽  
Author(s):  
M. van den Ende ◽  
A. Polson ◽  
G. S. Turner

A study has been made of the properties of soluble antigen in the brains of infant mice infected intracerebrally with the Flury strain of rabies virus.Soluble antigen is produced at the same time as infective virus, and reaches a high concentration in a period of 2–3 days.It can be partially purified by precipitation at pH 4·3. It is partially resistant to the action of trypsin, RNAse and DNAse. It is relatively stable at pH 6–10.Experimental results suggest that the soluble antigen remains antigenically active after heating at 56° C. and treatment with 0·5% phenol or 0·35% formal-dehyde, but that such heating markedly reduces the ability to stimulate formation of neutralizing antibody.Rabbits and mice appear to differ in the production of neutralizing antibody following immunization against soluble antigen in which residual live virus was inactivated by heat, phenol or formaldehyde.It is suggested that this difference may depend on the different susceptibility to traces of incompletely inactivated virus remaining in the immunizing antigens.The authors are grateful to Miss T. Madsen for her assistance in some aspects of this work. Dr N. Sapeika kindly made available facilities for the in vitro anaphylaxis experiments.Financial assistance was received from the Nkana-Kitwe and Chingola Poliomyelitis Research Funds.


2011 ◽  
Vol 71-78 ◽  
pp. 4848-4851
Author(s):  
Fan Mao Meng ◽  
Zhi Chao Liu ◽  
Zhi Zhong Liu

The water mist is an economical and environmental agent for gas explosion suppression. It can be applied in the commonly gas concentration zones and the gas accumulation zones which is difficult to reduce the concentration of methane gas. By numerical analysis, this paper studies the effect of the direction and the number of the nozzles, and the distance form the nozzles to the wall at X direction in upper corner in coal mine. For gas explosion suppression in upper corner, it can use one nozzle which direction is same as the wind and the distance is 2m.


Author(s):  
Chien-Sheng Liu ◽  
Hong-Fei Li ◽  
Min-Kai Lee

In the present study, we propose an innovative autofocusing (AF) voice coil motor (VCM) actuator to replace the traditional AF VCM actuators with springs for smart phone camera modules. In the proposed electromagnetic structure, the magnetic pre-compression force between the two guide rods and permanent magnet is used to replace the restoring resilience force of the two springs in the traditional AF VCM actuators. The proposed AF VCM actuator is characterized numerically using the simulation analysis of commercial software Infolytica MagNet and then verified experimentally using a laboratory-built prototype. The experimental results presented in this study show compared to traditional AF VCM actuator, the proposed AF VCM actuator has excellent AF performance to be able to replace the traditional AF VCM actuators. As a result, the proposed device provides a promising solution for smart phone camera modules or industrial applications.


Sign in / Sign up

Export Citation Format

Share Document