Subthreshold Behaviors of Nanoscale Silicon and Germanium Junctionless Cylindrical Surrounding-Gate MOSFETs

2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Chunsheng Jiang ◽  
Renrong Liang ◽  
Jing Wang ◽  
Jun Xu

AbstractWhen the traditional planar metal-oxide-semiconductor-field-effect transistors (MOSFETs) encounter insurmountable bottleneck of static power dissipation, junctionless transistor (JLT) becomes a promising candidate for sub-22 nm nanoscale devices due to its simpler fabrication process and better short-channel performances. Subthreshold behaviors dominate the standby power of nanoscale JLTs. In this chapter, a physics-based analytical model of electrostatic potential for both silicon and germanium short-channel junctionless cylindrical surrounding-gate (JLCSG) MOSFETs operated in the subthreshold regime is proposed, in which the full twodimensional (2D) Poisson’s equation is solved in the channel region by a method of series expansion. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this result, the expressions of threshold voltage, subthreshold drain current, and subthreshold swing for JLCSG MOSFETs are derived. Subthreshold behaviors are studied in detail by changing different device parameters and bias conditions, including doping concentration, channel radius, gate length, gate equivalent oxide layer thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the three-dimensional simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLCSG MOSFETs and to optimize their device performances.

2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Rekib Uddin Ahmed ◽  
Prabir Saha

Nowadays, the endlessly increasing demand for faster and complex integrated circuits (IC) has been fuelled by the scaling of metal-oxide-semiconductor field-effect-transistors (MOSFET) to smaller dimensions. The continued scaling of MOSFETs approaches its physical limits due to short-channel effects (SCE). Double-gate (DG) MOSFET is one of the promising alternatives as it offers better immunity towards SCEs and can be scaled to the shortest channel length. In future, ICs can be designed using DG-CMOS technology for which mathematical models depicting the electrical characteristics of the DG MOSFETs are foremost needed. In this paper, a review on n-type symmetric DG MOSFETs models has been presented based on the analyses of electrostatic potential distribution, threshold voltage, and drain-current models. Mathematical derivations of the device models are described elaborately, and numerical simulations are also carried out to validate the replicability of models.


1995 ◽  
Vol 06 (02) ◽  
pp. 317-373 ◽  
Author(s):  
G. GILDENBLAT ◽  
D. FOTY

We review the modeling of silicon MOS devices in the 10–300 K temperature range with an emphasis on the specifics of low-temperature operation. Recently developed one-dimensional models of long-channel transistors are discussed in connection with experimental determination and verification of the effective channel mobility in a wide temperature range. We also present analytical pseudo-two-dimensional models of short-channel devices which have been proposed for potential use in circuit simulators. Several one-, two-, and three-dimensional numerical models are discussed in order to gain insight into the more subtle details of the low-temperature device physics of MOS transistors and capacitors. Particular attention is paid to freezeout effects which, depending on the device design and the ambient temperature range, may or may not be important for actual device operation. The numerical models are applied to study the characteristic time scale of freezeout transients in the space-charge regions of silicon devices, to the analysis and suppression of delayed turn-off in MOS transistors with compensated channel, and to the temperature dependence of three-dimensional effects in short-channel, narrow-channel MOSFETs.


Aggressive scaling of Metal-oxide-semiconductor Field Effect Transistors (MOSFET) have been conducted over the past several decades and now is becoming more intricate due to its scaling limit and short channel effects (SCE). To overcome this adversity, a lot of new transistor structures have been proposed, including multi gate structure, high-k/metal gate stack, strained channel, fully-depleted body and junctionless configuration. This paper describes a comprehensive 2-D simulation design of a proposed transistor that employs all the aforementioned structures, named as Junctionless Strained Double Gate MOSFETs (JLSDGM). Variation in critical design parameter such as gate length (Lg ) is considered and its impact on the output properties is comprehensively investigated. The results shows that the variation in gate length (Lg ) does contributes a significant impact on the drain current (ID), on-current (ION), off-current (IOFF), ION/IOFF ratio, subthreshold swing (SS) and transconductance (gm). The JLSDGM device with the least investigated gate length (4nm) still provides remarkable device properties in which both ION and gm(max) are measured at 1680 µA/µm and 2.79 mS/µm respectively


2007 ◽  
Vol 46 (4A) ◽  
pp. 1437-1440 ◽  
Author(s):  
Guang-Xi Hu ◽  
Ran Liu ◽  
Ting-Ao Tang ◽  
Shi-Jin Ding ◽  
Ling-Li Wang

2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


Sign in / Sign up

Export Citation Format

Share Document