SPIONs and magnetic hybrid materials: Synthesis, toxicology and biomedical applications

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ralf P. Friedrich ◽  
Christina Janko ◽  
Harald Unterweger ◽  
Stefan Lyer ◽  
Christoph Alexiou

Abstract In the past decades, a wide variety of different superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized. Due to their unique properties, such as big surface-to-volume ratio, superparamagnetism and comparatively low toxicity, they are principally well suited for many different technical and biomedical applications. Meanwhile, there are a numerous synthesis methods for SPIONs, but high requirements for biocompatibility have so far delayed a successful translation into the clinic. Moreover, depending on the planned application, such as for imaging, magnetic drug targeting, hyperthermia or for hybrid materials intended for regenerative medicine, specific physicochemical and biological properties are inevitable. Since a summary of all existing SPION systems, their properties and application is far too extensive, this review reports on selected methods for SPION synthesis, their biocompatibility and biomedical applications.

2014 ◽  
Vol 5 ◽  
pp. 2403-2412 ◽  
Author(s):  
Cornelia Loos ◽  
Tatiana Syrovets ◽  
Anna Musyanovych ◽  
Volker Mailänder ◽  
Katharina Landfester ◽  
...  

Nanoparticles of various shapes, sizes, and materials carrying different surface modifications have numerous technological and biomedical applications. Yet, the mechanisms by which nanoparticles interact with biological structures as well as their biological impact and hazards remain poorly investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the particle surface characteristics on various biological parameters. Therefore, we have exploited polystyrene nanoparticles as a convenient platform to study bio–nano interactions. This review summarizes studies on positively and negatively charged polystyrene nanoparticles and compares them with clinically used superparamagnetic iron oxide nanoparticles.


Author(s):  
MUTHADI RADHIKA REDDY ◽  
KUMAR SHIVA GUBBIYAPPA

Carbon dots (CDs) have emerged as a potential material in the multifarious fields of biomedical applications due to their numerous advantageous properties including tunable fluorescence, water solubility, biocompatibility, low toxicity, small size and ease of modification, inexpensive scale-up production, and versatile conjugation with other targeted nanoparticles. Thus, CDs became a preferable choice in various biomedical applications such as nanocarriers for drugs, therapeutic genes, photo sensitizers, unique electronic, fluorescent, photo luminescent, chemiluminescent, and electro chemiluminescent, drug/gene delivery and optoelectronics properties are what gives them potential in sensing and antibacterial molecules. Further, their potentials have also been verified in multifunctional diagnostic platforms, cellular and bacterial bio-imaging, development of nanomedicine, etc. This present review provides a concise insight into the progress and evolution in the field of carbon dots research with respect to synthesis methods and materials available in bio-imaging, theranostic, cancer, gene therapy, diagnostics, etc. Further, our discussion is extended to explore the role of CDs in nanomedicine and nano theranostic, biotherapy which is the future of biomedicine and also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life and representative studies on their activities against bacteria, fungi, and viruses reviewed and discussed. This study will thus help biomedical researchers in percuss the potential of CDs to overcome various existing technological challenges.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1083
Author(s):  
Pariya Zare ◽  
Mina Aleemardani ◽  
Amelia Seifalian ◽  
Zohreh Bagher ◽  
Alexander M. Seifalian

Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. The presence of functional groups on graphene oxide (GO) enhances further interactions with other molecules. Therefore, recent studies have focused on GO-based materials (GOBMs) rather than graphene. The aim of this research was to highlight the physicochemical and biological properties of GOBMs, especially their significance to biomedical applications. The latest studies of GOBMs in biomedical applications are critically reviewed, and in vitro and preclinical studies are assessed. Furthermore, the challenges likely to be faced and prospective future potential are addressed. GOBMs, a high potential emerging material, will dominate the materials of choice in the repair and development of human organs and medical devices. There is already great interest among academics as well as in pharmaceutical and biomedical industries.


2006 ◽  
Vol 6 (9) ◽  
pp. 2829-2840 ◽  
Author(s):  
Katja Schulze ◽  
Annette Koch ◽  
Alke Petri-Fink ◽  
Benedikt Steitz ◽  
Sarah Kamau ◽  
...  

Superparamagnetic iron oxide nanoparticles (SPION) were coated with either Polyvinyl alcohol (PVA) or Vinyl alcohol/vinyl amine copolymer and further functionalized with the fluorochromes Cy3.5 or Texas Red. A colloidally stable suspension of nanoparticles was incubated on sheep synovial cells in vitro for 3, 24, 72, and 120 hours. Nanoparticle internalization into synoviocytes as well as biocompatibility was visualized using light, fluorescence and confocal microscopy and fluorochrome labeled cells were quantified by flow cytometry. Data were analyzed by ANOVA factorial tests. Amino-PVA-SPION alone was detectable in cytoplasmic endosome-like structures after 3 hours of incubation but resulted in early cell death after 24 hours. Although amino-PVA-Cy3.5- SPION and PVA-TexasRed-SPION were taken up more slowly and less intensely, both labeled more than 80% of the cells in culture, but did not significantly change cell morphology or vitality at any time of evaluation in comparison to control cells. Results indicate that functionalized amino PVA- coated SPION are biocompatible, were successfully internalized by synoviocytes and hold promise for future biomedical applications utilizing magnetic drug targeting in joint disease.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012008
Author(s):  
Thivya Baskaran ◽  
Nur Farahiyah Mohammad ◽  
Siti Shuhadah Md Saleh ◽  
Nashrul Fazli Mohd Nasir ◽  
Farah Diana Mohd Daud

Abstract Hydroxyapatite (HA) has drawn great attention to biomedical applications due to their bone mineral similarity, strong bioactivity, biocompatibility and osteoconductive. Despite the fact that HA has many advantages, several properties are still lacking, emphasising the crucial need for ion doping/substitution. Many attempts have been made to incorporate ions into HA structure to increase their physical, chemical, and biological properties. With such a diverse range of methods available for the synthesis of doped HA, this article discussed the importance of doping for HA and summarizes four common techniques used to prepare doped hydroxyapatites which include precipitation, hydrothermal, sol-gel and mechanochemical method.


2020 ◽  
Author(s):  
Morteza Javadi ◽  
Van A. Ortega ◽  
Alyxandra Thiessen ◽  
Maryam Aghajamali ◽  
Muhammad Amirul Islam ◽  
...  

<p>The design and fabrication of Si-based multi-functional nanomaterials for biological and biomedical applications is an active area of research. The potential benefits of using Si-based nanomaterials are not only due to their size/surface-dependent optical responses but also the high biocompatibility and low-toxicity of silicon itself. Combining these characteristics with the magnetic properties of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) multiplies the options available for real-world applications. In the current study, biocompatible magnetofluorescent nano-hybrids have been prepared by covalent linking of Si quantum dots to water-dispersible Fe<sub>3</sub>O<sub>4</sub> NPs <i>via</i> dicyclohexylcarbodiimide (DCC) coupling. We explore some of the properties of these magnetofluorescent nano-hybrids as well as evaluate uptake, the potential for cellular toxicity, and the induction of acute cellular oxidative stress in a mast cells-like cell line (RBL-2H3) by heat induction through short-term radio frequency modulation (10 min @ 156 kHz, 500 A). We found that the NPs were internalized readily by the cells and also penetrated the nuclear membrane. Radio frequency activated nano-hybrids also had significantly increased cell death where > 50% of the RBL-2H3 cells were found to be in an apoptotic or necrotic state, and that this was attributable to increased triggering of oxidative cell stress mechanisms. </p>


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 166 ◽  
Author(s):  
Lucia Lombardi ◽  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.


Sign in / Sign up

Export Citation Format

Share Document