Die physikalischen Grundlagen der Uran235-Anreicherung nach dem Trenndüsenverfahren / The Physics of Uranium235-Enrichment in the Separation Nozzle Process

1973 ◽  
Vol 28 (8) ◽  
pp. 1267-1272 ◽  
Author(s):  
W. Bier ◽  
G. Eisenbeiß ◽  
G. Heeschen

The effects of the added light gases H2, He, and D2 on the separation of the uranium isotopes in the separation nozzle process are compared experimentally. The superiority of H2 under economically optimum conditions turns out to be caused essentially by its less dissipative nozzle flow characterized by a higher Reynolds number. This advantage is decreased if differences in the flow velocity lose their effects on isotope separation, e. g. at higher expansion ratios. Thus, with He added, the isotope separation effects can get closer to those observed with H2; D2 even can get better than H2, because He and D2 prevent more efficiently UF6 from concentrating rapidly at the outer nozzle wall.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Yan Lou ◽  
Kewei Chen ◽  
Xiangwei Zhou ◽  
Yanfeng Feng

A novel Injection-rolling Nozzle (IRN) in an imprint system with continuous injection direct rolling (CIDR) for ultra-thin microstructure polymer guide light plates was developed to achieve uniform flow velocity and temperature at the width direction of the cavity exit. A novel IRN cavity was designed. There are eight of feature parameters of cavity were optimized by orthogonal experiments and numerical simulation. Results show that the flow velocity at the width direction of the IRN outlet can reach uniformity, which is far better than that of traditional cavity. The smallest flow velocity difference and temperature difference was 0.6 mm/s and 0.24 K, respectively. The superior performance of the IRN was verified through a CIDR experiment. Several 0.35-mm thick, 340-mm wide, and 10-m long microstructural Polymethyl Methacrylate (PMMA) guide light plates were manufactured. The average filling rates of the microgrooves with the aspect ratio 1:3 reached above 93%. The average light transmittance is 88%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. V. Suryanarayana

AbstractA new photoionization scheme accessible by Rhodamine dye lasers is proposed for the isotope separation of 176Lu.$$5d6s^{2}\,{^{2}D_{{3/2}}} (0.0\, {\text{cm}}^{{ - 1}} )\mathop{\longrightarrow}\limits^{{573.8130\, {\text{nm}}}}5d6s6p\,{^{4}F_{{3/2}}^{o}} \left( {17427.28\, {\text{cm}}^{{ - 1}} } \right)\mathop{\longrightarrow}\limits^{{560.3114\, {\text{nm}}}}$$ 5 d 6 s 2 2 D 3 / 2 ( 0.0 cm - 1 ) ⟶ 573.8130 nm 5 d 6 s 6 p 4 F 3 / 2 o 17427.28 cm - 1 ⟶ 560.3114 nm $$6s{6p}^{2}\,{^{4}{P}_{5/2}}\left(35274.5 \,{\text{cm}}^{-1}\right){\to } Autoionization\, State {\to }{Lu}^{+}$$ 6 s 6 p 2 4 P 5 / 2 35274.5 cm - 1 → A u t o i o n i z a t i o n S t a t e → Lu + Optimum conditions for the laser isotope separation have been theoretically computed and compared with the previously reported work. The enrichment of ~ 63% can be obtained with > 22 mg/h production rate even when broadband lasers with bandwidth of 500 MHz are employed for the two step excitation. The simplified system requirements for the photoionization scheme combined with a high production rate of 176Lu than previously reported is expected to reduce the global shortage of 176Lu isotope for medical applications.


Author(s):  
Samsul Islam ◽  
Md. Shariful Islam ◽  
Mohammad Zoynal Abedin

The heat transfer enhancement is recycled in many engineering uses such as heat exchangers, refrigeration and air conditioning structures, chemical apparatuses, and automobile radiators. Hence many enhancing extended fin patterns are developed and used. In multi louvered fin, in this segment for multi-row fin and tube heat exchanger, an increase in heat transfer enhancement is found 58% for ReH = 350. When the Reynolds number is 1075, the temperature gradient is more distinct for greater louver angle that is the higher heat transfer enhanced for large louver angle. For variable louver angle heat exchanger, the maximum heat transfer improvement achieved by 118% Reynolds number at 1075. In the vortex generator for the delta winglet vortex generator, the extreme enhancement of heat transfer increased to 16% compared to the baseline geometry (at ReDh = 600). For a compact louvered heat exchanger, the results showed that a regular arrangement of louvered fins gives a 9.3% heat transfer improvement. In multi-region louver fins and flat tubes heat exchanger, the louver fin with 4 regions and the louver fin with 6 regions are far better than the conventional fin in overall performance. At the same time, the louver fin with 6 regions is also better than the louver fin with 4-region. The available work is in experimental form as well as numerical form performed by computational fluid dynamics.


Author(s):  
Iman Tarik Al-Alawy ◽  
Raghad Saadoon Mohammed ◽  
Mohammed Zorah Hassan ◽  
Waleed Jabar Mhanah

This work describes the atomic laser isotope separation (LIS). The (LIS) plant means calculating the values of a large number of parameters in order to optimize some objective function. Here we use simple model to describe the elementary physical processes: evaporation, vapor expansion, interaction between photons and atoms, ion extraction etc...concentrated on theoretical and empirical bases. An optimization process for the separation of Uranium isotopes is described and discussed.


Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


1995 ◽  
Vol 117 (2) ◽  
pp. 248-254 ◽  
Author(s):  
C. Hu¨rst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U∞=230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 × 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent–divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number k–ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


Author(s):  
Himanshu Tyagi ◽  
Rui Liu ◽  
David S.-K. Ting ◽  
Clifton R. Johnston

The study of vortex shedding from a sphere assumes an important role because of its relevance to numerous aerodynamic and hydrodynamic applications. Parameters such as coefficient of drag and static pressure distribution are largely influenced by vortex shedding, and it is found by past studies that the freestream turbulence can interact and alter the vortex formation and shedding drastically. Most of these studies, however, were conducted in the low Reynolds number regime and the vortex shedding results had been described only qualitatively. To better understand the aerodynamics of a sphere in turbulent flow, an experimental study was initiated in a low speed wind tunnel to quantify the vortex shedding characteristics. The Reynolds number of the flow, based on the diameter of the sphere (d), was set at 3.3 × 104, 5 × 104 and 6.6 × 104 by varying the mean flow velocity. The sphere was placed at 20D (= 7.5d) downstream from a perforated plate, where D = 37.5 mm is the size of the holes in the perforated plate, uniquely designed for generating near-isotropic turbulence. Hot-wire measurements were taken at 10D (= 3.75d), 20D (= 7.5d) and 30D (= 11.25d) downstream of the sphere in absence and presence of the perforated plate. The vortex shedding frequency was deduced from the instantaneous flow velocity data.


Author(s):  
Chad X.-Z. Zhang ◽  
Sung In Kim ◽  
Ibrahim G. Hassan

The performance of a louver cooling scheme on a flat plate was analyzed using Detached Eddy Simulation. It was assumed that the louver cooling scheme was tested in a wind tunnel with the mainstream flow velocity of 20 m/s, equivalent to a Reynolds number of 16200 based on the jet diameter. Turbulence closure was achieved by a Realizable k-ε based DES turbulence model. Solutions of two blowing ratios of 0.5 and 1 were successfully obtained by running parallel on 16 nodes on a computer cluster. The instantaneous flow fields were found to be highly unsteady and oscillatory in nature. It is shown that the fluctuations in the adiabatic effectiveness are mainly caused by the spanwise fluctuation of the coolant jet and the unsteady vortical structures created by the interaction of the jet and the mainstream.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041989724 ◽  
Author(s):  
Liang Zhang ◽  
JiaWei Zhou ◽  
Bo Zhang ◽  
Wei Gong

Erosion in pipeline caused by solid particles, which may lead to premature failure of the pipe system, is regarded as one of the most important concerns in the field of oil and gas. Therefore, the Euler–Lagrange, erosion model, and discrete phase model are applied for the purpose of simulating the erosion of water–hydrate–solid flow in submarine hydrate transportation pipeline. In this article, the flow and erosion characteristics are well verified on the basis of experiments. Moreover, analysis is conducted to have a good understanding of the effects of hydrate volume, mean curvature radius/pipe diameter ( R/ D) rate, flow velocity, and particle diameter on elbow erosion. It is finally obtained that the hydrate volume directly affects the Reynolds number through viscosity and the trend of the Reynolds number is consistent with the trend of erosion rate. Taking into account different R/ D rates, the same Stokes number reflects different dynamic transforms of the maximum erosion zone. However, the outmost wall (zone D) will be the final erosion zone when the value of the Stokes number increases to a certain degree. In addition, the erosion rate increases sharply along with the increase of flow velocity and particle diameter. The effect of flow velocity on the erosion zone can be ignored in comparison with the particle diameter. Moreover, it is observed that flow velocity is deemed as the most sensitive factor on erosion rate among these factors employed in the orthogonal experiment.


Sign in / Sign up

Export Citation Format

Share Document