Relationship between Structure and Permeability of Tryptophan Derivatives Across Human Intestinal Epithelial (Caco-2) Cells

2003 ◽  
Vol 58 (1-2) ◽  
pp. 135-142 ◽  
Author(s):  
Machiko Urakami ◽  
Rieko Ano ◽  
Yukitaka Kimura ◽  
Motohiro Shima ◽  
Ryuichi Matsuno ◽  
...  

ʟ-Trp and its derivatives were used as model compounds to clarify structural factors which influence the intestinal epithelial permeation and metabolism of amino-acid derivatives. Permeability of model compounds through Caco-2 cells was used as an in vitro absorption model for human intestinal epithelial cells. The influence of compound concentration, the effects of various transporter substrates on permeability coefficients, and pH dependency of permeability coefficients were investigated. The transcellular permeability of Trp and Trp-NH2 in the direction from the apical side to the basolateral side, in which nutrients and drugs were ordinarily absorbed, declined with increasing concentration and saturated at more than 1 and 0.4 mᴍ, respectively. The permeability coefficients for N-terminal protected Trp derivatives and Ac-Trp-NH2 showed similar and constant values in both from the apical-to-basolateral and basolateral-to-apical directions. In addition, significant inhibition of the apical-tobasolateral permeation of Trp by Leu and Phe was observed. The permeability coefficient ratio at pH 6.3 to that at pH 7.3 was explained by the ratio of the ionic form to the neutral form of the compounds. Based upon these results and the partition coefficients in the 1-octanol/water system, possible absorption mechanism of Trp and its derivatives across Caco- 2 cells was proposed

2004 ◽  
Vol 48 (7) ◽  
pp. 2604-2609 ◽  
Author(s):  
Xin He ◽  
Mitsuru Sugawara ◽  
Yoh Takekuma ◽  
Katsumi Miyazaki

ABSTRACT The aim of this study was to elucidate the absorption mechanism in Caco-2 and rat intestine models in order to improve the accuracy of prediction of oral absorption of ester prodrugs. Pivampicillin and cefcapene pivoxil hydrochloride (CFPN-PI), ester-type oral antibiotics, were chosen as model ester prodrugs. The level of esterase activity in Caco-2 cells was lower than that measured in the rat jejunum when p-nitrophenyl acetate was used as a substrate. Almost complete ester hydrolysis occurred before the ester prodrugs reached the basolateral side of the monolayer, and the disappearance of prodrugs was thought to be due to metabolism or transport after addition to the apical side of the monolayer. When pivampicillin and CFPN-PI were used, the amounts of ampicillin and cefcapene (CFPN) produced by hydrolysis of prodrugs were increased because intracellular degradation of prodrugs resulted in intracellular accumulation. On the other hand, when ampicillin or CFPN was used, only a small amount of the drug reached the basolateral side of the monolayers and no intracellular accumulation was observed. The permeability of CFPN-PI, the solubility of which is dependent on the acidity of gastric juice, across a Caco-2 monolayer or rat intestine, was also investigated by using an in vitro system that mimics the physiological state of the human gastrointestinal tract. The oral absorption of CFPN-PI in humans is predicted to be good either in the Caco-2 model or in the rat intestine model. It is concluded that our system may be a valuable tool for evaluation of oral absorption of ester prodrugs metabolized during permeation through the intestinal epithelium. Broader evaluation of such a system is warranted.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Reiko Nakao ◽  
Weilin Shen ◽  
Yasuka Shimajiri ◽  
Kumiko Kainou ◽  
Yuki Sato ◽  
...  

AbstractWe previously reported that intramuscular injections of ubiquitin ligase CBLB inhibitory pentapeptide (Cblin; Asp-Gly-pTyr-Met-Pro) restored lost muscle mass caused by sciatic denervation. Here, we detected Cblin on the basolateral side of Caco-2 cells after being placed on the apical side, and found that cytochalasin D, a tight junction opener, enhanced Cblin transport. Orally administered Cblin was found in rat plasma, indicating that intact Cblin was absorbed in vitro and in vivo. Furthermore, transgenic Cblin peptide-enriched rice (CbR) prevented the denervation-induced loss of muscle mass and the upregulation of muscle atrophy-related ubiquitin ligases in mice. These findings indicated that CbR could serve as an alternative treatment for muscle atrophy.


1996 ◽  
Vol 271 (6) ◽  
pp. C1973-C1980 ◽  
Author(s):  
W. Wang ◽  
M. J. Merrill ◽  
R. T. Borchardt

Vascular endothelial growth factor (VEGF), which stimulates endothelial cell growth and induces hyperpermeability of the microvasculature, plays an important role in normal and tumor-vasculature development and tumor edema generation. In this study, we investigated the effect of VEGF on the permeability of cultured bovine brain microvessel endothelial cells (BMECs), an in vitro blood-brain barrier (BBB) model. We found that addition of purified VEGF to both the apical and basolateral sides of the BMEC monolayers increased the permeability of the monolayer to [14C]sucrose (approximately 3-fold). A more significant increase in permeability was observed when VEGF was applied to the basolateral side of the monolayer (3-fold) than to the apical side (1.5-fold). The permeability-increasing activity of VEGF on the BMEC monolayers is both dose and time dependent. The VEGF-induced permeability increase in BMECs requires a long incubation time with VEGF, and the effect is durable. These results suggest that this cell culture system may be useful for exploring the role of VEGF in regulating the permeability of the BBB, for studying the mechanism of the permeability-increasing effect of VEGF on the endothelial cells, and for evaluating the strategies to regulate the activity of VEGF.


2019 ◽  
Author(s):  
Bianca Maria Rotoli ◽  
Rossana Visigalli ◽  
Amelia Barilli ◽  
Francesca Ferrari ◽  
Massimiliano G. Bianchi ◽  
...  

ABSTRACTIn human, OCTN2 (SLC22A5) and ATB0,+ (SLC6A14) transporters mediate the uptake of L-carnitine, essential for the transport of fatty acids into mitochondria and the subsequent degradation by β-oxidation. Aim of the present study is to characterize L-carnitine transport in EpiAirway™, a 3D organotypic in vitro model of primary human tracheal-bronchial epithelial cells that form a fully differentiated, pseudostratified columnar epithelium at air-liquid interface (ALI) condition. In parallel, Calu-3 monolayers grown at ALI were used as comparison. In EpiAirway™, ATB0,+ was highly expressed and functional on the apical side while OCTN2 transporter was active on the basolateral side. Calu-3 cells showed a different pattern of expression and activity for ATB0,+: indeed, L-carnitine uptake on apical side was evident in Calu-3 at 8 days of culture but not in fully differentiated 21d ALI culture. As both ATB0,+ and OCTN2, beyond transporting L-carnitine, have a significant potential as delivery systems for drugs, the identification of these transporters in EpiAirway™ can open new fields of investigation in the studies of drug inhalation and pulmonary delivery.


2012 ◽  
Vol 5 (3) ◽  
pp. 319-324 ◽  
Author(s):  
M. De Nijs ◽  
H.J. Van den Top ◽  
L. Portier ◽  
G. Oegema ◽  
E. Kramer ◽  
...  

Certain mycotoxins may be present in plant materials as their glucosides. The question is whether these glucosides may be hydrolysed into their parent compounds in the gastro-intestinal tract (GI-tract), thus increasing the exposure. Therefore, the potential hydrolysis of deoxynivalenol-3-ß-glucoside (DON-3G) to deoxynivalenol (DON) was assessed in two in vitro models representing the human upper GI-tract (mouth, stomach and small intestine). In a fed digestion model, there was no evidence of release of DON from DON-3G, spiked at a level of 2,778 μg DON- 3G/kg food. This shows that the conditions in the GI-tract do not result in hydrolysis of this glucoside into the original mycotoxin. The absorption and transformation of DON-3G in the small intestine was assessed in an in vitro model with human Caco-2 cells in a Transwell system. No evidence was found for the transformation of DON-3G to DON by the Caco-2 cells in both the apical or basolateral side in 24 hours (cells were exposed to 2.4 nmol DON- 3G/ml medium). However, when DON itself was added to the apical side an amount of 23% of the spiked DON was detected in the basolateral side after 24 hours (cells were exposed to 2.3 nmol/ml medium). In conclusion, no evidence was found in the in vitro experiments for significant elevated exposure of humans to DON, since DON- 3G was not hydrolysed to DON in the digestion model representing the upper part of the GI-tract and DON-3G was not hydrolysed to DON by the intestinal epithelial Caco-2 cells. It was shown that bioavailability of DON-3G in humans may be low as compared to DON since Caco-2 cells did not absorb DON-3G, in contrast to DON.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 122
Author(s):  
Keiichiro Sugimoto ◽  
Midori Amako ◽  
Hiroaki Takeuchi ◽  
Kazuya Nakagawa ◽  
Morio Yoshimura ◽  
...  

Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but not glucose absorption); however, its active compound has not yet been identified. Therefore, we evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell monolayer model cultured on membrane filters were exposed to fructose with or without the ELE. Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL. Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63% at a final concentration of 5 μg/mL. Oenothein B did not affect glucose absorption. In contrast, the other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused by dietary fructose consumption.


2018 ◽  
Vol 365 (24) ◽  
Author(s):  
Rebekah Rose ◽  
Svenja Häuser ◽  
Carolin Stump-Guthier ◽  
Christel Weiss ◽  
Manfred Rohde ◽  
...  

Abstract Escherichia coli is the most common Gram-negative causative agent of neonatal meningitis and E. coli meningitis is associated with high morbidity and mortality. Previous research has been carried out with regard to the blood–brain barrier and thereby unveiled an assortment of virulence factors involved in E. coli meningitis. Little, however, is known about the role of the blood–cerebrospinal fluid (CSF) barrier (BCSFB), in spite of several studies suggesting that the choroid plexus (CP) is a possible entry point for E. coli into the CSF spaces. Here, we used a human CP papilloma (HIBCPP) cell line that was previously established as valid model for the study of the BCSFB. We show that E. coli invades HIBCPP cells in a polar fashion preferentially from the physiologically relevant basolateral side. Moreover, we demonstrate that deletion of outer membrane protein A, ibeA or neuDB genes results in decreased cell infection, while absence of fimH enhances invasion, although causing reduced adhesion to the apical side of HIBCPP cells. Our findings suggest that the BCSFB might constitute an entry point for E. coli into the central nervous system, and HIBCPP cells are a valuable tool for investigating E. coli entry of the BCSFB.


2015 ◽  
Vol 309 (2) ◽  
pp. G123-G131 ◽  
Author(s):  
Abhisek Ghosal ◽  
Stefan Jellbauer ◽  
Rubina Kapadia ◽  
Manuela Raffatellu ◽  
Hamid M. Said

Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium ( S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.


1994 ◽  
Vol 266 (1) ◽  
pp. G15-G21 ◽  
Author(s):  
H. M. Said ◽  
T. Y. Ma

The cellular and molecular regulation of intestinal absorption of the water-soluble vitamin riboflavine (RF) is poorly understood. The availability of a suitable in vitro cultured system that possesses the transport characteristics of the native intestinal absorptive cells would provide a powerful means to address this issue. In this study, we examined RF uptake by the human-derived cultured Caco-2 intestinal epithelial cells. RF uptake was Na+ and pH independent and occurred without metabolic alterations of the transported RF. Initial rate of RF uptake was temperature dependent and saturable as a function of concentration at 37 degrees C but not at 4 degrees C (apparent Michaelis constant = 0.30 +/- 0.03 microM, maximal velocity = 209.90 +/- 24.40 pmol.mg protein-1.3 min-1). Unlabeled RF, lumiflavine, 8-amino-riboflavine, isoriboflavine, and lumichrome in the incubation solution caused significant inhibition of RF uptake. RF uptake was also energy dependent and was sensitive to the inhibitory effect of sulfhydryl group reagents. The membrane transport inhibitor amiloride, but not 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 4-acetamide-4'-isothiocyanostilbene-2,2'-disulfonic acid, furosemide, or probenecid, inhibited RF uptake in a competitive (inhibitory constant = 0.48 mM) and reversible manner. Growing Caco-2 monolayers in a RF-deficient and oversupplemented media caused significant up- and downregulation of RF uptake, respectively. These results demonstrate the existence of a carrier-mediated system for RF uptake by Caco-2 cells and provide new information regarding amiloride sensitivity, involvement of sulfhydryl groups, and up- and downregulation by the substrate level and clarify the controversy regarding the role of Na+ in the uptake process.(ABSTRACT TRUNCATED AT 250 WORDS).


2019 ◽  
Author(s):  
Yu Du ◽  
Gauri Khandekar ◽  
Jessica Llewellyn ◽  
William Polacheck ◽  
Christopher S. Chen ◽  
...  

AbstractChronic cholestatic liver diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are frequently associated with damage to the barrier function of the biliary epithelium, but barrier function is difficult to study in vivo and has not been recapitulated in vitro. Here we report the development of a bile duct-on-a-chip that phenocopies not only the tubular architecture of the bile duct in three dimensions, but also its barrier functions. We demonstrated that mouse cholangiocytes in the channel of the device became polarized and formed mature tight junctions, and that the permeability of the cholangiocyte monolayer was comparable to that measured ex vivo for the rat bile duct. Permeability decreased significantly when cells formed a compacted monolayer with cell densities comparable to that seen in vivo. This device enabled independent access to the apical and basolateral surfaces of the cholangiocyte channel, allowing proof-of-concept toxicity studies with the biliary toxin biliatresone and the bile acid glycochenodeoxycholic acid. The cholangiocyte basolateral side was more vulnerable than the apical side to treatment with either agent, suggesting a protective adaptation of the apical surface that is normally exposed to bile. Further studies revealed a protective role of the cholangiocyte apical glycocalyx, wherein disruption of the glycocalyx with neuraminidase increased the permeability of the cholangiocyte monolayer after treatment with glycochenodeoxycholic acid. Conclusion: This bile duct-on-a-chip captured essential features of a simplified bile duct in structure and organ-level functions and represents a novel in vitro platform to study the pathophysiology of the bile duct using cholangiocytes from a variety of sources.


Sign in / Sign up

Export Citation Format

Share Document